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Abstract

We introduce a curriculum learning algorithm, Variational Automatic Curriculum
Learning (VACL), for solving challenging goal-conditioned cooperative multi-
agent reinforcement learning problems. We motivate our paradigm through a
variational perspective, where the learning objective can be decomposed into two
terms: task learning on the current task distribution, and curriculum update to a
new task distribution. Local optimization over the second term suggests that the
curriculum should gradually expand the training tasks from easy to hard. Our VACL
algorithm implements this variational paradigm with two practical components, task
expansion and entity progression, which produces training curricula over both the
task configurations as well as the number of entities in the task. Experiment results
show that VACL solves a collection of sparse-reward problems with a large number
of agents. Particularly, using a single desktop machine, VACL achieves 98%
coverage rate with 100 agents in the simple-spread benchmark and reproduces the
ramp-use behavior originally shown in OpenAlI’s hide-and-seek project. Our project
website is athttps://sites.google.com/view/vacl-neurips-2021.

1 Introduction

Building intelligent agents in complex multi-agent games remains a long-standing challenge in
artificial intelligence [23]]. Recently, it has been a trend to apply multi-agent reinforcement learning
(MARL) to extremely challenging multi-agent games, such as Dota II [5]], StarCraft II [29] and
Hanabi [3]. Despite these successes, learning intelligent multi-agent policies in general still remains
a great RL challenge. Multi-agent games allow sophisticated interactions between agents and
environment. Feasible solutions may require non-trivial intra-agent coordination, which leads to
substantially more complex strategies than the single-agent setting. Moreover, as the number of
agents increases, the joint action space grows at an exponential rate, which results in an exponentially
large policy search space. Thus, most existing MARL applications typically require shaped rewards,
or assume simplified environment dynamics, or only handle a limit number of agents.

We tackle goal-conditioned cooperative MARL problems with sparse rewards through a novel varia-
tional inference perspective. Assuming each task can be parameterized by a continuous representation,
we introduce a variational proposal distribution over the task space and then decomposing the overall
training objective into two separate terms, i.e., a policy improvement term and a task proposal update
term. By treating the proposal distribution updates as the training curriculum, such a variational
objective naturally suggests a curriculum learning framework by alternating between curriculum
update and MARL training. In addition, we propose a continuous relaxation technique for discrete
variables so that the variational curricula can be also applied over the number of agents and objects in
the task, which leads to a generic and unified training paradigm for the cooperative MARL setting.
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We implement our variational training paradigm through a computationally efficient algorithm,
Variational Automatic Curriculum Learning (VACL). VACL consists two components, fask expansion
and entity progression, which generate a series of effective training tasks in a hierarchical manner.
Intuitively, entity progression leverages the inductive bias that tasks with more entities are usually
more difficult in MARL and, therefore, progressively increases the entity size in the environment.
Task expansion assumes a fixed number of entities and is motivated by Stein variational gradient
descent (SVGD) [17] to efficiently expand the task distribution towards the entire task space.

We provide thorough discussions on the differences between VACL and existing works (Sec. [3.4) and
empirically validate VACL using a single desktop machine in four physical multi-agent cooperative
games, i.e., two in the multi-agent particle-world environment (MPE) [19] and two in the MuJoCo-
based hide-and-seek environment (HnS) [2] (Sec.[d). In the MPE games, VACL learns significantly
faster and better than all baselines and achieves over 98% coverage rate with 100 agents in the
simple-spread testbed even using sparse rewards. In the HnS scenarios, VACL achieves over 90%
success rates on both two games, including reproducing the ramp use behavior discovered in [2]]
and solving a sparse-reward multi-agent Lock-and-Return challenge where none of the baselines can
produce a success rate above 15% using the same amount of training timesteps.

2 A Variational Perspective on Curriculum Learning

2.1 Preliminary

We formulate each goal-conditioned cooperative multi-agent task as a multi-agent Markov decision
process (MDP), M (n, ¢) =< n,¢,S,A,0,0, P, R, sg, Je,7Y >, parameterized by a discrete vari-
able n (e.g., the number of agent{]} and a continuous parameter ¢ € ® (i.e., the initial state and
goal; details in App. C.2). S is the state space. A is the shared action space for each agent. O is
the observation space. o, = O(s; ) denotes the observation for agent ¢ under state S. 525 denotes
the initial state and g4 denotes the goal. P(s’|s, A) and R(s, A; g4) are the transition probability
and the goal-conditioned reward function given state s and joint actions A = (a1, ..., ay). 7y is the
discounted factor.

We consider homogeneous agents and learn a shared goal-conditioned policy 7 (a;|o;, g) parameter-
ized by 6 for each agent i. The final objective is to maximize the expected accumulative reward over
the entire task space, i.e.,

J(G) = En,qb,ai:,s" lz ’YtR(Sta At; qu) = ]En,qb[v(na ¢7 W@)]v (D
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where V' (n, ¢, mg) denotes the value function for 7y over task M (n, ¢). We remark that for problems
with 0/1 sparse rewards, V' (n, ¢, mp) can be also interpreted as the success rate of 7

The main idea of curriculum learning is to construct a task sampler ¢(n, ¢) that always generates
training tasks M (n, ¢) that yield the largest learning progress for 7y to efficiently maximize J ().

2.2 Stein Variational Inference over a Continuous Task Space

For simplicity, we ignore the discrete variable n and only focus on the continuous variable ¢ in this
subsection. Herein, our objective is to maximize the expectation £ = Eq.p(¢) [V (¢, 7)], where p(¢)
is a uniform distribution over feasible values of ¢. The subscript 6 of 7 is omitted for conciseness.

Given the objective £, we motivate our automated curriculum learning procedure through the lens
of variational inference. Let ¢(¢) denote the current distribution of training tasks, which will vary
throughout learning; we can represent curriculum learning through an objective that optimizes ¢(¢).

' can also be a discrete vector where each dimension represents the number of a particular type of objects.

We now simply assume 7 is a single integer denoting the agent number for conciseness.
This only rigorously holds when v = 1. But let’s assume it for simplicity. In practice, this statement
approximately holds with a close-to-1 « and a relatively short horizon.



The following lower bound for the original objective £ can be derived:
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where the inequality is due to z — 1 > log x, with equality achieved at p(¢) = q(¢) for all ¢.

Now, we have decomposed L(m, ¢) into a lower bound that contains two terms £, and Ly. £ is
simply a policy update objective under the current task curriculum ¢(¢) while the second term £, can
be interpreted as a curriculum update objective by maximizing ¢(¢) w.r.t. the policy 7. Therefore,
the decomposed lower bound naturally yields a curriculum learning framework by performing an
iterative learning procedure, i.e., alternating between (1) maximizing £, with 7 (policy update) and
(2) maximizing Lo with ¢(¢) (curriculum update). We remark that we only optimize 7 w.r.t. £;
instead of £, + L5 for the purpose of stabilizing policy learning since g can be very different from p
in the early stage of training. This also aligns with the curriculum learning paradigm. In the following
proposition, we show that if we can perfectly optimize the RL procedure for £, under the curriculum
q(®), then the curriculum objective Lo will encourage ¢(¢) to converge to p(¢).

Proposition 1. Assume that V (¢, ) € [0,1] and that there exists a unique policy 7 such that
V(p,n*) = 1 for all ¢. For any q € P(®) \ {p} (i.e., any curriculum that is not the final
one) and w € argmax, L1(m,q) (i.e., a policy that is optimal under the current curriculum),
Lo(m,q) < La(m*,p) = 0.

Proof. First, we have that £ (7*, p) = 1 (definition of 7*) and Lo(7*, p) = 0. Suppose that I, ¢
such that g # p and L1 (7, ¢) = 1; then it must be the case that whenever V' (¢, ) # 1, ¢(¢) = 0, Le.,
V¢ € supp(q), V (¢, m) = 1. Then L2(¢, ) = —Dkr(q|lp) < 0, which completes the proof. [

In other words, if our policy 7 already performs well under the current curriculum ¢(¢), then Lo will
encourage ¢(¢) to become “closer” to p(¢), aligning with our eventual target of learning all tasks.

2.2.1 Stein Variational Gradient Descent for Curriculum Update

The most straightforward approach for optimizing L is to learn a generative model w.r.t. the
current 7, which can be particularly sample-inefficient. Instead, we consider updates to our current
curriculum via smooth updates, which is much more efficient than learning generative models.

Let us represent the task distribution under the current curriculum ¢(¢) with a set of particles
Q = {¢}. To update each particle ¢ in Q, we consider an incremental transform 7'(¢) = ¢ + ef (),
where f(¢) is a smooth function and € is a magnitude scalar. Our goal is then to derive suitable
updates to Q that maximizes L2 (g, 7) based on the transform T". Following [9] and [27], we introduce
an assumption over the generalization ability of the task space.

Assumption 1. An optimal policy m that is trained over a specific task ¢ has some generalization

ability fo another goal ¢' close to ¢. Specifically, if V (¢, 7) = c for any ¢ € supp(q), then
V(¢',7) = cforall ¢ € B(¢), where B(¢) is a small open ball around ¢.

In the context of curriculum learning, this assumption suggests that for any policy that is trained
on a set of tasks, the performance (e.g., success rate) does not change if we only change the task
parameters by an infinitesimal amount. In the following theorem, we derive the functional gradient of
the curriculum update objective L5 in a reproducing kernel Hilbert space (RKHS).

Theorem 1. Let T'(¢) = ¢ + € f(¢p) where f is an element of some vector-valued RKHS of a positive
definite kernel k(¢,¢') : ® x ® — R, and q;r) the density of y) = T'(¢) when ¢ ~ q, then

Vi La(qir), ™)l =0 = f*(9), “4)
where f*(-) = Egeg[V (¢, m)(k(¢', )V logp(¢') + Ve k(¢ )]

Proof is in App. A. While the above statement is very similar to that used for Stein variational gradient
descent [17]], the update for our case also directly depends on the value V' (¢, 7), and thus indirectly



depends on the current policy. Intuitively, if V' (¢', ) is large, then ¢’ will contribute more to the
curriculum update, whereas if V' (¢, ) = 0, then ¢’ will not contribute to the update.

Since we assume that p(¢) is uniform over the task space, V4 log p(¢') = 0 for the interior of @,
and the task update becomes

f*() = E¢'€Q[V(¢/7Tr) : V¢"k(¢/7 )] (5)

For example, we take the RBF kernel k(¢, ¢') = exp(—1 ¢ — ¢’||§) and then Eq. (5) will drive ¢
away from neighbouring points that have large k(¢, ¢’), and the repelling force scales with V' (¢', 7).
If V(¢',7m) = 0, i.e., ¢’ has not been solved at all, then there is no repelling force from ¢’ to ¢.
Intuitively, this process encourages the curriculum update to prioritize tasks that have not been fully
solved yet, by exploring in the vicinity of existing tasks with high values.

2.3 Continuous Relaxation for Discrete Parameter

Now we switch to the discrete parameter n in our task representation, which results in a non-
continuous task space and can be difficult to directly combine with continuous optimization tech-
niques. Therefore, we propose to utilize a continuous variable alternative z to represent the discrete
variable n so that the same variational inference technique for ¢ can be applied here. Specifi-
cally, assuming n denotes the number of agents, we represent n with a categorical distribution
p(n; z) = Cat(zy, 22, . . ., zy) parametrized by a continuous vector z = [z1, ..., zx] assuming the
maximum possible of agentlsﬁis N. p(n; z) denotes the distribution which generates n agents with
probability z,,. In this case, we can similarly introduce a target distribution p(z) over the space of z
and derive the corresponding variational updates with V' (z, 7). Since we typically wish to learn a
policy that can generalizes across different number of agents, such a representation over multiple n’s
naturally satisfies this practical requirement. We also remark that this formulation can be directly
extended to the problems with multiple discrete variables (e.g., number of both agents and objects)
via a categorical distribution over all possible discrete combinations.

3 Variational Automatic Curriculum Learning

In this section, we implement the variational inference paradigm with computation-efficient approxi-
mations as our VACL algorithm in the context of sparse-reward cooperative MARL problems.

We will first present Task Expansion in Sec.[3.1] which is the most important algorithmic component
assuming a continuous task space. Then, Entity Progression, i.e., the component specialized for
discrete task parameters, will be introduced in Sec. Finally, the full algorithm and the literature
review will follow in Sec.[3.3and Sec. 3.4

3.1 Task Expansion as Approximated Stein Variational Inference

Task Expansion is a computation-efficient curriculum update method, which assumes a continuous
task representation ¢ and optimizes the variational lower bound Lo w.r.t. ¢(¢). Directly optimizing £
can be computational challenging. In the following content, we will present a few critical techniques
for the efficient approximation computation.

3.1.1 An Ever-Expanding Particle Set

In the standard Stein variational inference framework, we typically maintain a fixed-size particle set
Q and gradually update the distribution of these particles using Stein variational gradient descent.
Since the policy is constantly changing throughout training, we need to repeatedly update the entire
set of particles to match the corresponding proposal distribution under £, which is computationally
expensive. Note that in the cooperative MARL setting, assuming a fixed amount of agents and an
ever-improving policy, if we initialize ¢(¢) to the proper sub-space of easiest tasks, ¢(¢) would
monotonically expand towards the entire task space. Hence, we can simply maintain an ever-
expanding particle set by repeatedly adding novel tasks with sufficiently high values (i.e., success
rates) under the current policy without the need of modifying those existing particles in Q.

3If N is unbounded, we may consider parametrized discrete random processes such as the Chinese restaurant
process. For all practical purposes here, this is unnecessary.



3.1.2 Value Quantization

Another issue for optimizing Lo is that whenever 7 up-
dates, V (¢, w) changes accordingly but evaluating the

value function can be particularly expensive in MARL
problems. As a practical approximation, we roughly V(m)
categorize all the tasks into 3 categories w.r.t. their val- 0
ues, i.e., a solved subspace of highest values, Qg =
{&|V (¢, m) > Omax}, an active subspace of moderate l
values, Qaet = {P|omin < V(#, ) < Omax}» and the re-
maining unsolved subspace. Here oy, and op,,x are 1
quantization thresholds. Since the value function would

monotonically increase as training proceeds, we only

need to verify whether an active task becomes solved or Figure 1: Task space partition.
whether an unsolved task becomes active, and maintain

Qact and Qg accordingly. Once a task becomes solved,

future value estimation becomes no longer necessary. In addition, w.r.t. the curriculum learning
principle, when optimizing 7 under £, we can also sample more training tasks from Q,.; for more
effective training.

3.1.3 Sampling-Based Particle Exploration

With an ever-expanding particle set Q, we need to explore
novel task samples in the task space and add those tasks
with sufficiently high values (i.e., V' > opin) to Q. The
update equation for ¢(¢) in Eq.(5) naturally suggests a
diversity-based task expansion scheme, namely exploring
sufficiently novel tasks in the vicinity of Q. Due to the
difficulty in value estimation, we again follow the value
quantization framework and simplify Eq.(5) as follows:

() xEgegqVek(d,-)]. (6)

In the simplified Eq.(6), we simply ignore tasks with
moderate values (i.e., active tasks in Q,y) and only
evaluate the expectation w.r.t. tasks with the highest
values (i.e., solved tasks in Q) as a practical approxi-
mation. Moreover, since Qg is ever-expanding, Eq.@
also suggests that we should explore novel tasks in the
boundary region between Qg and Q, (Fig. . Hence, in practice, whenever an active task from
Q. becomes solved after policy update, we select them as seed tasks to derive novel exploration
task samples.

uniform noise  f*(-)

Figure 2: We explore novel tasks in the
boundary region between Qg and Q¢

Eq.(6) suggests purely gradient-based exploration, which may cause practical issues in cur-
riculum learning since the feasible task parameterization space is often highly constrained. Fig. [5(b)|
illustrates a maze scenario where agents need to navigate towards the landmarks and avoid the black
obstacles. The task parameterization ¢ includes the positions of agents and landmarks. The feasible
subspace of ¢ is constrained by the obstacles while these feasibility constraints are only accessible
as a black box in the curriculum learning setting. Therefore, directly computing a constraint-free
gradient can easily lead to an exploration direction towards infeasible regions. Here we suggest a
simple sampling-based enhancement for such highly-constrained problems, which promotes effective
task-space exploration and can be viewed as a zero-th order approximation of the projected gradient.

Rejection-Sampling Exploration: We explore novel tasks ¢, by adding small uniform

noise to the gradient of seed tasks, namely gexp < Psced + € f *(seed) + Unif(—0, §). Then we reject
those infeasible tasks by querying the environment for configuration feasibility.



Algorithm 1: The VACL Algorithm

Input: 0, ng, N, B, Bexp; // B : training batch size; B, : exploration size
Output: final policy 7y;

k+«0,0% « {}, Q% « GetEasy(ng); // use easy tasks to initialize ¢(¢)
repeat

2 ¢ 1, ngy1 < Ine(ng), Q8 « {}, OEF! « GetEasy(ny1);

while not converge with ny, do

// Policy Update

Mpsin < Sample(B x z, Q%) + Sample(B x (1 — z), QF1);

Train and evaluate 79 on M., via MARL;

// Task Expansion

kok+1 kk+1} . .
expand Qs{of 1} and Ot 1 using the value estimates on M yin;

// generate novel exploration tasks
Mieeda < active tasks from M, that just become solved under 7y ;
Meyp  generate By, exploration task samples from seeding tasks in Meeq;

Add exploration tasks M.y, to Qiﬁ’kﬂ};

// Entity Progression
| Decay z;

k+ k+1;

until n, = NV;

3.2 Entity Progression for Massive Multi-Agent Learning

Directly applying the Stein variational update (Eq.(3)) over the relaxation z of the discrete variable n
results in a uniform expansion over the entire N-dimensional space of z, which can be computational
challenging when N is particularly large. We leverage an important inductive bias in cooperative
MARL that problems with more agents are generally harder than fewer agents, which implies a
monotonic update scheme over the z space by starting with z,,, = 1, where n is the smallest possible
number of agents, and gradually increasing the probability mass of z; for larger k values.

Entity Progression simplifies this procedure further by restricting z to only have two non-zero entries,
i.e., 2z + 2z = 1 with k' > k, which suggests a smooth and progressive transition from a simpler
problem with k agents (i.e., zx = 1) to a harder problem with k" agents (i.e., zx» = 1). Note that we
can increase the agent number incrementally (i.e., k¥’ = k + 1) or at an exponential rate (i.e., k¥’ = 2k),
the latter of which is typically more preferred in practice. We remark that entity progression can be
directly applied to problems with multiple discrete parameters by viewing k as a discrete vector.

3.3 VACL: A Hierarchical Automatic Curriculum Learning Algorithm

Since the change of discrete variable n may cause a drastic distribution shift of value functions,
instead of using a joint continuous representation unifying both n and ¢, VACL combines Entity
Progression and Task Expansion in a hierarchical manner: at the low level, task expansion maintains
a separate curriculum g™ (¢) for each n and performs particle-based curriculum update under a fixed
n; at the high level, entity progression progressively increases n to n’ by smoothly switching training
distribution from ¢"(¢) to ¢" (¢). The full procedure is summarized in Algo.

3.4 Connection to Existing Works

We focus on goal-conditioned multi-agent cooperative problems and assume a paramterized task
space. This is a common setting in the recent Automatic Curriculum Learning (ACL) literature [4} [25]].
Some works also consider a fixed set of tasks [20], which are typically referred to as multi-task
learning [33]]. The core idea of ACL is to train the policy using tasks with moderate difficulty, i.e.,
neither too hard nor too easy, which naturally emerges as a consequence of our variational paradigm.

A popular class of ACL methods learns a generative model, such as VAE [26], GAN [9] [7] and
Gaussian mixture model [24, 12 22]], over the task space with density concentrated on tasks with



desired difficulties. These methods can be viewed as a generic solution under our variational objective
(Eq.[3) by representing q(¢) as a generative model and directly optimizing Lo whenever the policy
is updated. However, it can be extremely sample-inefficient to repeatedly learn ¢(¢) from scratch
without leveraging the fact that ¢(¢) is ever-expanding in cooperative MARL problems.

Another type of ACL methods is particle-based, which maintains a set of solvable task samples
and gradually expands the set towards the entire space. [10} [11] assume a fixed goal and generate
tasks with starting states increasingly far away from the goal; [IL} 21]] consider a task space over
simulator configurations and train from the easiest settings to the hardest for sim-to-real adaptation.
These methods are conceptually similar to the Task Expansion component in VACL for its particle-
based nature and can be viewed as a random search procedure for optimizing £ in a gradient-free
manner. Our method provides a principled interpretation of curriculum updates, and achieves superior
performance in practice. Besides, [30] learn an individual policy paired with each task for discovering
diverse behaviors while our work learns a single goal-conditioned policy for the entire task space;
[32] defines the active set as those parts of the task space in which the value function exhibits the
largest gradient w.r.t. the task variable and proposes to meta-learn f*(¢) to more effectively expand
the curriculum distribution, which is complementary to our work. [[14}[15] propose novel optimization
methods based on the value function to minimize the KL-Divergence between ¢(¢) and p(¢) while
our work provides a gradient-based exploration method to expand ¢(¢) to the entire task space.

[18[31] propose population curriculum, which trains entity-invariant policies over training tasks with
a growing number of agents. [8] adopt a similar curriculum learning method for Sokoban with an
increasing number of boxes. These methods can be viewed as a special case of our Entity Progression
component by applying a hard transfer from z;, = 1 to z;» = 1 while our method smoothly switches
between different number of entities and also yields better empirically performances.

4 Experiment

We consider four tasks over two environments, Simple-Spread and Push-Ball in the multi-agent
particle-world environment (MPE) [19], and Ramp-Use and Lock-and-Return in the hide-and-seek
environment (HnS) [2]. Every experiment is repeated over 3 seeds and performed on a desktop
machine with one 64-core CPU and one 2080-Ti GPU, which is used for forward action computation
and training updates. More details can be found in Appendix.

4.1 The Multi-Agent Particle-World Environment

The two tasks are illustrated in Fig.[3] In Simple-Spread, there are n agents and n landmarks and the
agents need to occupy all the landmarks. The agents are penalized for collisions and only receive a
positive reward when all the landmarks are covered. In Push-Ball, there are n agents, n balls and n
landmarks. The agents need to physically push the balls to get every landmark covered. A success
reward is given after all landmarks are covered. We scale n at an exponential rate following [[18]].

4.1.1 Main Result

We present most important results in this section and more analysis can be found in App. B. We
compare VACL with 5 baselines, including (1) multi-agent PPO [34] with uniform task sampling
(Uniform), (2) population curriculum only (PC-Unif), (3) reverse curriculum generation (RCG) [10],
(4) automatic goal generation (GoalGAN) [9]], which uses a GAN to generate training tasks, (5)
adversarially motivated intrinsic goals (AMIGo) [6], which learns a teacher to generate increasingly
challenging goals. We test all methods in Simple-Spread with n = 8 and Push-Ball with n = 4. For
PC-Unif and VACL, we start with ng = 4 in Simple-Spread and ny = 2 in Push-Ball and then switch
to the desired agent number. Evaluation is always performed on the final N. Results are shown in
Fig.[d] where VACL outperforms all baselines with a clear margin. In Simple-Spread, all baselines
fail to solve the task: Uniform and PC-Unif fail to gain sufficient progress due to sparse rewards;
RCG quickly runs out of active tasks; GoalGAN and AMIGo takes an extremely long time to train a
good neural goal-generator. In Push-Ball, Uniform and PC-Unif learn much slower, RCG quickly
converges to a local minimum without further policy improvements, GoalGAN and AMIGo again
consumes a large number of samples to make training progress.
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Figure 3: MPE tasks. Figure 4: Comparison of VACL and baselines on MPE.

In addition to the baselines above, we also consider the set-
ting of massive agents on Simple-Spread and compare our - Taple 1: The best coverage rate ever re-
VACL method with other coverage numbers in the existing  ported on Simple-Spread.

literature. We consider two existing works. The atten-

tional communication (ATOC) method [[13]], which adopts n | EPC  ATOC VACL
intra-agent communication channels and trains n = 50

. . 24 | 56.8% / 97.6 %
and n = 100 agents with dense rewards. ATOC is not 50 / 2%  98.5%

open-sourcecﬂ We re-train VACL on the same environ- 100 / 89% 989
ment configuration (i.e., same agent/landmark size and
room size) as ATOC for a fair comparison with the num-
ber reported in [[13]]. The other work is evolutionary population curriculum (EPC) [18]], which reports
the coverage rate on the standard Simple-Spread task with n = 24 agents. EPC adopts dense rewards
and separate policies for each agent while VACL trains a shared policy with sparse 0/1 rewards. The
results are reported in Tab. [l VACL achieves a 98% coverage rate with n = 100 agents, which
outperforms the highest number ever reported to the best of our knowledge.

4.1.2 Ablation Study

Choice of seed task: As implied by Eq. (5) and Eq. (6), VACL explores from the boundary between
Qact and Qg by taking newly solved tasks as seeds to generate exploration tasks. A naive alternative
is to simply take active tasks from 9, as seeds (Exp.Act.), which is similar to the exploration scheme
in the RCG algorithm [[10]. Note that exploration from active tasks may possibly produce unsolvable
tasks, we consider an additional enhanced variant (Exp.Act w. eval), which take active tasks as seeds
but also perform value estimates (and training) on those exploration tasks to filter out unsolvable tasks
before adding them to Q,.. Results of these variants are shown in Fig. Using active tasks as
seeds (Exp.Act.) leads to a clear failure since the aggressive exploration brings too many unsolvable
tasks to Q,. Although additional evaluation on exploration tasks (Exp.Act.w.eval) significantly
stabilizes training, it still yields much worse training progress than the standard VACL. This suggests
that it is critical to explore from the vicinity of solved subspace.

SVGD-Principled Update: Our Stein variational paradigm suggests a gradient-based update rule to
explore novel tasks in Sec.[3.1.3] However, most existing particle-based algorithms adopts a much
simplified gradient-free alternative via uniform random noise, i.e., gexp <= @seed + Unif(—6, d). To
illustrate the effectiveness of our SVGD-principled update rule, we consider a challenging Hard-
Spread scenario in Fig. with 4 agents and 4 landmarks. Obstacles are in black and landmarks
can only be placed in the right side. We initialize Q,. with easy tasks where each landmark has an
agent nearby and evaluate the performance of the learning policy on those hardest tasks in Fig.
We remark that due to the highly constrained task space, it becomes particularly challenging for the
ACL method to gradually guide the agents to learn to go through the narrow doors between obstacles.
We evaluate the test performances of VACL and the simplified gradient-free version (Unif. noise)
in Fig. Our principled rule produces a stable learning curve with fast convergence while the
gradient-free version fails to solve the task.

Rejection Sampling: To investigate the effectiveness of rejection-sampling-based exploration
(R.J.), we turn off rejection-sampling (i.e., strictly following Eq ([6)) and conduct experiments on
Hard-Spread (i.e., highly constrained task space) and Simple-Spread (i.e., less constrained task space)
in Tab. 21

“We contacted the authors but did not get a response.
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Figure 5: Ablation studies. (a) We evaluate different choices of seed tasks in Simple-Spread. (b) We
select the hardest tasks to evaluate the performance of different exploration strategies in the Hard-
Spread scenario, which has a highly constrained task space. (c) We compare our SVGD-principled
exploration strategy with random exploration from seed tasks in Hard-Spread. (d) We perform
experiments in Simple-Spread using different numbers of particles to represent Q. (¢) We compare
entity progression with direct entity transfer in standard Simple-Spread and Push-Ball.

Rejection-sampling-based exploration clearly im- Table 2: Ablation study on the rejection-
proves the final performance, particularly in Hard- sampling technique in Task Expansion on
Spread, where purely gradient-based expansion (i.e., Simple-Spread and Hard-Spread with n = 4
Eq.(6)) can hardly discover feasible novel tasks. It is

worth mentioning that these feasibility constraints are  coveragerate % | w. R.J. w.0. RJ.
shared across all the experiments, so all the baselines .

. . : ’ Simple-Spread | 96.0£1.9 94.1+4.9
including RCG, GoalGAN, and AMIGo, have access Ilialzd- SpI;Z ad 979+ 1.4 0

to the feasibility check and are able to produce feasible
training tasks.

Sensitivity of Particle Number: We perform experiments with different numbers of particles in
Simple-Spread with n = 4 and the results in Fig. [5(d)] show that we do need sufficient particles to
approximate ¢(¢) . Insufficient particle size (e.g., 400) results in inaccurate estimation and poor
performance. The results are robust when particle size is at least 1000. We choose 4000 particles to
approximate g(¢) in all our experiments.

Entity Progression: We compare entity progression with naive population curriculum, i.e., directly
transfer the trained policy on nj_; to the next entity size ny, (fransfer). We train with the two methods
on Simple-Spread from ng = 4 to N = 8 and on Push-Ball from ny = 2to N = 4. The results are
shown in Fig. In both two tasks, direct transfer yields a significant performance drop, which
we believe due to the drastic training distribution shift. For entity progression, due to its smooth
transition between the continuous relaxation of z;, = 1 and z;, = 1, it produces a much stable training
curves. Entity progression also yields the much better final performances particularly on the more
challenging Push-Ball scenario.



4.2 The Hide-and-Seek Environment

We consider two tasks in the hide-and-seek environment
(HnS) as shown in Fig. [} i.e., a simplified hide-and-
seek game called Ramp-Use and a multi-agent and sparse-
reward variant of the Lock-and-Return task from the trans-
fer task suite in [2]]. Ramp-Use is a single-agent scenario
for the ramp use strategy, with 1 ramps, 1 movable seeker
and 1 fixed hider in the quadrant room. We need to train Z
. . Hider
a seeker policy to use the ramp to get into the quadrant Wall —
room for positive rewards. In Lock-and-Return, the dis-
crete parameter n becomes a 2-dimensional vector and
each dimension represents the number of agents and boxes
respective. Agents need to lock all the boxes and return
to their birthplaces. Agents get a reward when all boxes
are locked and another success reward when the task is
finished, i.e., all boxes locked and all agents back to the birthplaces.

\-Unlocked Box

-,
Locked Box—— !

Seeker
AN

Ramp
—7

A

Aé;nt ‘] .

Lock-and-Return

Ramp-Use

Figure 6: Tasks in the hide-and-seek en-
vironment (HnS).

The results of different methods are shown in Tab. 3] We train each algorithm on Ramp-Use for 80M
timesteps and on Lock-and-Return with n = (2, 2) for 180M timesteps. For Lock-and-Return with
n = (4,4), we train VACL for a total number of 230M timesteps. We report the average success rate
over 3 seeds. VACL is the only algorithm able to solve both two tasks.

Table 3: Results of VACL and baselines in HnS tasks.

\ | Uniform RCG GoalGAN AMIGo VACL
Ramp-Use | n=1 |428%+354% 31.5% £33.7% 1.0%+0.8% 47.2%+10.3% 93.3% =+ 5.4%
Lock-and-Return | ™ = (2:2) <1% 5.0% + 5.1% <1% < 2% 97.3% £ 0.1%
n=(4,4) / / / / 97.0% + 1.6%

In Lock-and-Return, we start with the easy setting of ny = (2, 2)
and proceed towards N = (4,4). Note that n is a 2-dimensional
discrete vector in this task, there are multiple paths to transit from the
continuous relaxation z(z 3y = 110 2(4,4) = 1. One is to double the
number of agents first and keep the box number unchanged, and then
double the number of boxes, i.e., 2, =1 — zuy=1—2y =1
(agent-first). The other is to first double the number of boxes and then

Lock-and-Return (n=(4, 4))

oy
o

o
©

o
IS

success rate
o
o

J
=== box-first

increase the agent number, i.e., zp,, = 1 — 224 =1 =2y =1
(box-first). Although both two paths are feasible transitions, they lead
to different practical performances. The results are shown in Fig.[7]
where we clearly observe that the strategy of increasing agent number
first substantially outperforms the box-first strategy. Therefore, we
generally suggest to increase the number of agents before objects

o
[N}

e agent-first

0.0 0.5 1.0 15
timesteps(x108)

Figure 7: Results of different
entity switching strategies.

in entity progression. We remark that since no baseline achieves a
success rate above 15% even in the easy case of n = (2,2), we do not evaluate them in the hard
setting.

5 Conclusion

In this paper, we propose a novel curriculum learning paradigm following the principle of Stein
variational inference and develop an effective algorithm, Varitional Automatic Curriculum Learning
(VACL), which solves a collection of sparse-reward multi-agent cooperative problems. In this work,
we consider cooperative tasks for the clear measurement of training progress. We also remark that
VACL assumes a monotonic expansion of ¢(¢), which only holds in the fully cooperative setting.
There are also existing works that study ACL for competitive games [28, [16} 2], which we leave as
future work. Our framework tackles an important research problem in the literature while experiments
are conducted on open-source environments with student licences, so we believe our work does not
produce any negative impact to the society.
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