
The Surprising Effectiveness of PPO in Cooperative
Multi-Agent Games

Chao Yu1♯∗, Akash Velu2♮∗, Eugene Vinitsky2♭, Jiaxuan Gao1,
Yu Wang1♭, Alexandre Bayen2, Yi Wu13♭

1 Tsinghua University 2 University of California, Berkeley 3 Shanghai Qi Zhi Institute
♯zoeyuchao@gmail.com, ♮akashvelu@berkeley.edu

Abstract

Proximal Policy Optimization (PPO) is a ubiquitous on-policy reinforcement learn-
ing algorithm but is significantly less utilized than off-policy learning algorithms
in multi-agent settings. This is often due to the belief that PPO is significantly
less sample efficient than off-policy methods in multi-agent systems. In this work,
we carefully study the performance of PPO in cooperative multi-agent settings.
We show that PPO-based multi-agent algorithms achieve surprisingly strong per-
formance in four popular multi-agent testbeds: the particle-world environments,
the StarCraft multi-agent challenge, Google Research Football, and the Hanabi
challenge, with minimal hyperparameter tuning and without any domain-specific
algorithmic modifications or architectures. Importantly, compared to competitive
off-policy methods, PPO often achieves competitive or superior results in both
final returns and sample efficiency. Finally, through ablation studies, we analyze
implementation and hyperparameter factors that are critical to PPO’s empirical
performance, and give concrete practical suggestions regarding these factors. Our
results show that when using these practices, simple PPO-based methods can be a
strong baseline in cooperative multi-agent reinforcement learning. Source code is
released at https://github.com/marlbenchmark/on-policy.

1 Introduction
Recent advances in reinforcement learning (RL) and multi-agent reinforcement learning (MARL)
have led to a great deal of progress in creating artificial agents which can cooperate to solve tasks:
DeepMind’s AlphaStar surpassed professional-level performance in the StarCraft II [35], OpenAI
Five defeated the world-champion in Dota II [4], and OpenAI demonstrated the emergence of
human-like tool-use agent behaviors via multi-agent learning [2]. These notable successes were
driven largely by on-policy RL algorithms such as IMPALA [10] and PPO [30, 4] which were often
coupled with distributed training systems to utilize massive amounts of parallelism and compute.
In the aforementioned works, tens of thousands of CPU cores and hundreds of GPUs were utilized
to collect and train on an extraordinary volume of training samples. This is in contrast to recent
academic progress and literature in MARL which has largely focused developing off-policy learning
frameworks such as MADDPG [22] and value-decomposed Q-learning [32, 27]; methods in these
frameworks have yielded state-of-the-art results on a wide range of multi-agent benchmarks [36, 37].

In this work, we revisit the use of PPO – an on-policy algorithm2 popular in single-agent RL but under-
utilized in recent MARL literature – in multi-agent settings. We hypothesize that the relative lack of
PPO in multi-agent settings can be attributed to two related factors: first, the belief that PPO is less
sample-efficient than off-policy methods and is correspondingly less useful in resource-constrained
settings, and second, the fact that common implementation and hyperparameter tuning practices

∗Equal Contribution. ♭ Equal Advising.
2Technically, PPO adopts off-policy corrections for sample-reuse. However, unlike off-policy methods, PPO

does not utilize a replay buffer to train on samples collected throughout training.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://github.com/marlbenchmark/on-policy

when using PPO in single-agent settings often do not yield strong performance when transferred to
multi-agent settings.

We conduct a comprehensive empirical study to examine the performance of PPO on four popular
cooperative multi-agent benchmarks: the multi-agent particle world environments (MPE) [22], the
StarCraft multi-agent challenge (SMAC) [28], Google Research Football (GRF) [19] and the Hanabi
challenge [3]. We first show that when compared to off-policy baselines, PPO achieves strong task
performance and competitive sample-efficiency. We then identify five implementation factors and
hyperparameters which are particularly important for PPO’s performance, offer concrete suggestions
about these factors, and provide intuition as to why these suggestions hold.

Our aim in this work is not to propose a novel MARL algorithm, but instead to empirically demonstrate
that with simple modifications, PPO can achieve strong performance in a wide variety of cooperative
multi-agent settings. We additionally believe that our suggestions will assist practitioners in achieving
competitive results with PPO.

Our contributions are summarized as follows:

• We demonstrate that PPO, without any domain-specific algorithmic changes or architectures
and with minimal tuning, achieves final performances competitive to off-policy methods on
four multi-agent cooperative benchmarks.

• We demonstrate that PPO obtains these strong results while using a comparable number of
samples to many off-policy methods.

• We identify and analyze five implementation and hyperparameter factors that govern the
practical performance of PPO in these settings, and offer concrete suggestions as to best
practices regarding these factors.

2 Related Works
MARL algorithms generally fall between two frameworks: centralized and decentralized learning.
Centralized methods [6] directly learn a single policy to produce the joint actions of all agents. In
decentralized learning [21], each agent optimizes its reward independently; these methods can tackle
general-sum games but may suffer from instability even in simple matrix games [12]. Centralized
training and decentralized execution (CTDE) algorithms fall in between these two frameworks.
Several past CTDE methods [22, 11] adopt actor-critic structures and learn a centralized critic which
takes global information as input. Value-decomposition (VD) methods are another class of CTDE
algorithms which represent the joint Q-function as a function of agents’ local Q-functions [32, 27, 31]
and have established state of the art results in popular MARL benchmarks [37, 36].

In single-agent continuous control tasks [8], advances in off-policy methods such as SAC [13] led
to a consensus that despite their early success, policy gradient (PG) algorithms such as PPO are
less sample efficient than off-policy methods. Similar conclusions have been drawn in multi-agent
domains: [25] report that multi-agent PG methods such as COMA are outperformed by MADDPG
and QMix [27] by a clear margin in the particle-world environment [23] and the StarCraft multi-agent
challenge [28].

The use of PPO in multi-agent domains is studied by several concurrent works. [7] empirically show
that decentralized, independent PPO (IPPO) can achieve high success rates in several hard SMAC
maps – however, the reported IPPO results remain overall worse than QMix, and the study is limited
to SMAC. [25] perform a broad benchmark of various MARL algorithms and note that PPO-based
methods often perform competitively to other methods. Our work, on the other hand, focuses on PPO
and analyzes its performance on a more comprehensive set of cooperative multi-agent benchmarks.
We show PPO achieves strong results in the vast majority of tasks and also identify and analyze
different implementation and hyperparameter factors of PPO which are influential to its performance
multi-agent domains; to the best of our knowledge, these factors have not been studied to this extent
in past work, particularly in multi-agent contexts.

Our empirical analysis of PPO’s implementation and hyperparameter factors in multi-agent settings
is similar to the studies of policy-gradient methods in single-agent RL [34, 17, 9, 1]. We find several
of these suggestions to be useful and include them in our implementation. In our analysis, we focus
on factors that are either largely understudied in the existing literature or are completely unique to the
multi-agent setting.

2

3 PPO in Multi-Agent Settings

3.1 Preliminary

We study decentralized partially observable Markov decision processes (DEC-POMDP) [24] with
shared rewards. A DEC-POMDP is defined by ⟨S,A, O,R, P, n, γ⟩. S is the state space. A is the
shared action space for each agent i. oi = O(s; i) is the local observation for agent i at global state
s. P (s′|s,A) denotes the transition probability from s to s′ given the joint action A = (a1, . . . , an)
for all n agents. R(s,A) denotes the shared reward function. γ is the discount factor. Agents
use a policy πθ(ai|oi) parameterized by θ to produce an action ai from the local observation oi,
and jointly optimize the discounted accumulated reward J(θ) = EAt,st [

∑
t γ

tR(st, At)] where
At = (at1, . . . , a

t
n) is the joint action at time step t.

3.2 MAPPO and IPPO

Our implementation of PPO in multi-agent settings closely resembles the structure of PPO in single-
agent settings by learning a policy πθ and a value function Vϕ(s); these functions are represented
as two separate networks. Vϕ(s) is used for variance reduction and is only utilized during training;
hence, it can take as input extra global information not present in the agent’s local observation,
allowing PPO in multi-agent domains to follow the CTDE structure. For clarity, we refer to PPO with
centralized value function inputs as MAPPO (Multi-Agent PPO), and PPO with local inputs for both
the policy and value function as IPPO (Independent PPO). We note that both MAPPO and IPPO use
operate in settings where agents share a common reward, as we focus only on cooperative settings.

3.3 Implementation Details

• Parameter-Sharing: In benchmark environments with homogeneous agents (i.e. agents have
identical observation and action spaces), we utilize parameter sharing; past works have shown
that this improves the efficiency of learning [5, 33], which is also consistent with our empirical
findings. In these settings, agents share both the policy and value function parameters. Comparison
of parameter-sharing setting and individual parameter setting can be found in Appendix C.2. We
remark that agents are homogenous in all benchmarks except for the Comm setting in the MPEs.

• Common Practices: We also adopt common practices in implementing PPO, including Gen-
eralized Advantage Estimation (GAE) [29] with advantage normalization and value-clipping.
A full description of hyperparameter search settings, training details, and implementation de-
tails are in Appendix C. The source code for our implementation can be found in https:
//github.com/marlbenchmark/on-policy.

4 Main Results

4.1 Testbeds and Baselines

Testbeds: We evaluate the performance of MAPPO and IPPO on four cooperative benchmarks
– the multi-agent particle-world environment (MPE), the StarCraft micromanagement challenge
(SMAC), the Hanabi challenge, and Google Research Football (GRF) – and compare these methods’
performance to popular off-policy algorithms which achieve state of the art results in each benchmark.
Detailed descriptions of each testbed can be found in Appendix B.

Baselines: In each testbed, compare MAPPO and IPPO to a set of off-policy baselines, specifically:

• MPEs: QMix [27] and MADDPG [22].
• SMAC: QMix [27] and SOTA methods including QPlex [36], CWQMix [26], AIQMix [18] and

RODE [37].
• GRF: QMix [27] and SOTA methods including CDS [20] and TiKick [16].
• Hanabi: SAD [15] and VDN [32]

Here we give a brief description of common experimental setup. The specific settings for each testbed
are described later in Sec. 4.2-4.5.

• Hyper-parameters Search: For a fair comparison, we re-implement MADDPG and QMix
and tune each method using a grid-search over a set of hyper-parameters such as learning rate,

3

https://github.com/marlbenchmark/on-policy
https://github.com/marlbenchmark/on-policy

Map MAPPO(FP) MAPPO(AS) IPPO QMix RODE* MAPPO*(FP) MAPPO*(AS)

2m vs_1z 100.0(0.0) 100.0(0.0) 100.0(0.0) 95.3(5.2) / 100.0(0.0) 100.0(0.0)

3m 100.0(0.0) 100.0(1.5) 100.0(0.0) 96.9(1.3) / 100.0(0.0) 100.0(1.5)

2svs1sc 100.0(0.0) 100.0(0.0) 100.0(1.5) 96.9(2.9) 100.0(0.0) 100.0(0.0) 100.0(0.0)

2s3z 100.0(0.7) 100.0(1.5) 100.0(0.0) 95.3(2.5) 100.0(0.0) 96.9(1.5) 96.9(1.5)

3svs3z 100.0(0.0) 100.0(0.0) 100.0(0.0) 96.9(12.5) / 100.0(0.0) 100.0(0.0)

3svs4z 100.0(1.3) 98.4(1.6) 99.2(1.5) 97.7(1.7) / 100.0(2.1) 100.0(1.5)

so many baneling 100.0(0.0) 100.0(0.7) 100.0(1.5) 96.9(2.3) / 100.0(1.5) 96.9(1.5)

8m 100.0(0.0) 100.0(0.0) 100.0(0.7) 97.7(1.9) / 100.0(0.0) 100.0(0.0)

MMM 96.9(0.6) 93.8(1.5) 96.9(0.0) 95.3(2.5) / 93.8(2.6) 96.9(1.5)

1c3s5z 100.0(0.0) 96.9(2.6) 100.0(0.0) 96.1(1.7) 100.0(0.0) 100.0(0.0) 96.9(2.6)

bane vs bane 100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(46.4) 100.0(0.0) 100.0(0.0)

3svs5z 100.0(0.6) 99.2(1.4) 100.0(0.0) 98.4(2.4) 78.9(4.2) 98.4(5.5) 100.0(1.2)

2cvs64zg 100.0(0.0) 100.0(0.0) 98.4(1.3) 92.2(4.0) 100.0(0.0) 96.9(3.1) 95.3(3.5)

8mvs9m 96.9(0.6) 96.9(0.6) 96.9(0.7) 92.2(2.0) / 84.4(5.1) 87.5(2.1)

25m 100.0(1.5) 100.0(4.0) 100.0(0.0) 85.9(7.1) / 96.9(3.1) 93.8(2.9)

5mvs6m 89.1(2.5) 88.3(1.2) 87.5(2.3) 75.8(3.7) 71.1(9.2) 65.6(14.1) 68.8(8.2)

3s5z 96.9(0.7) 96.9(1.9) 96.9(1.5) 88.3(2.9) 93.8(2.0) 71.9(11.8) 53.1(15.4)

10mvs11m 96.9(4.8) 96.9(1.2) 93.0(7.4) 95.3(1.0) 95.3(2.2) 81.2(8.3) 89.1(5.5)

MMM2 90.6(2.8) 87.5(5.1) 86.7(7.3) 87.5(2.6) 89.8(6.7) 51.6(21.9) 28.1(29.6)

3s5zvs3s6z 84.4(34.0) 63.3(19.2) 82.8(19.1) 82.8(5.3) 96.8(25.11) 75.0(36.3) 18.8(37.4)

27mvs30m 93.8(2.4) 85.9(3.8) 69.5(11.8) 39.1(9.8) 96.8(1.5) 93.8(3.8) 89.1(6.5)

6hvs8z 88.3(3.7) 85.9(30.9) 84.4(33.3) 9.4(2.0) 78.1(37.0) 78.1(5.6) 81.2(31.8)

corridor 100.0(1.2) 98.4(0.8) 98.4(3.1) 84.4(2.5) 65.6(32.1) 93.8(3.5) 93.8(2.8)

Table 1: Median evaluation win rate and standard deviation on all the SMAC maps for different
methods, Columns with “*” display results using the same number of timesteps as RODE. We bold all
values within 1 standard deviation of the maximum and among the “*” columns, we denote all values
within 1 standard deviation of the maximum with underlined italics. AS next to MAPPO indicates an
agent-specific centralized input to the value function; FP indicates a similar agent-specific centralized
input, but with redundant information removed.

Figure 1: Performance of different algorithms in the MPEs.

target network update rate, and network architecture. We ensure that the size of this grid-search is
equivalent to the size used to tune MAPPO and IPPO. We also test various relevant implementation
tricks including value/reward normalization, hard and soft target network updates for Q-learning,
and the input representation to the critic/mixer network.

• Training Compute: Experiments are performed on a desktop machine with 256 GB RAM, one
64-core CPU, and one GeForce RTX 3090 GPU used for forward action computation and training
updates.

Empirical Findings: In the majority of environments, PPO achieves results better or comparable to
the off-policy comparison methods with comparable sample efficiency.

4.2 MPE Testbed

Experimental Setting: We consider the three cooperative tasks proposed in [22]: the physical
deception task (Spread), the simple reference task (Reference), and the cooperative communication
task (Comm). As the MPE environment does not provide a global input, we follow [22] and
concatenate all agents’ local observations to form a global state which is utilized by MAPPO and the

4

off-policy methods. Furthermore, Comm is the only task without homogenous agents; hence, we do
not utilize parameter sharing for this task. All results are averaged over ten seeds.

Experimental Results: The performance of each algorithm at convergence is shown in Fig. 1.
MAPPO achieves performance comparable and even superior to the off-policy baselines; we particu-
larly see that MAPPO performs very similarly to QMix on all tasks and exceeds the performance of
MADDPG in the Comm task, all while using a comparable number of environment steps. Despite
not utilizing global information, IPPO also achieves similar or superior performance to centralized
off-policy methods. Compared to MAPPO, IPPO converges to slightly lower final returns in several
environments (Comm and Reference).

4.3 SMAC Testbed

Experimental Setting: We evaluate MAPPO with two different centralized value function inputs
– labeled AS and FP – that combines agent-agnostic global information with agent-specific local
information. These inputs are described fully in Section 5. All off-policy baselines utilize both the
agent-agnostic global state and agent-specific local observations as input. Specifically, for agent i,
the local Q-network (which computes actions at execution) takes in only the local agent-specific
observation oi as input while the global mixer network takes in the agent-agnostic global state s as
input. We follow the evaluation metric proposed in [37]: for each seed, we compute the win rate
over 32 games after each training iteration and take the median of the final ten evaluations as the
performance for each seed.

Experimental Results: We measure the median win rates over six seeds in Table 1, which compares
the PPO-based methods to QMix and RODE. Full results are deferred to Table 2 and Table 3 in
Appendix. MAPPO, IPPO, and QMix are trained until convergence or reaching 10M environment
steps. Results for RODE are obtained using the statistics from [37]. We observe that IPPO and
MAPPO with both the AS and FP inputs achieve strong performance in the vast majority of SMAC
maps. In particular, MAPPO and IPPO perform at least as well as QMix in most maps despite
using the same number of samples. Comparing different value functions inputs, we observe that the
performance of IPPO and MAPPO is highly similar, with the methods performing strongly in all
but one map each. We also observe that MAPPO achieves performance comparable or superior to
RODE’s in 10 of 14 maps while using the same number of training samples. With more samples,
the performance of MAPPO and IPPO continue to improve and ultimately match or exceed RODE’s
performance in nearly every map. As shown in Appendix D.1,MAPPO and IPPO perform comparably
or superior to other other off-policy methods such as QPlex, CWQMix, and AIQMix in terms of both
final performance and sample-efficiency.

Overall, MAPPO’s effectiveness in nearly every SMAC map suggests that simple PPO-based algo-
rithms can be strong baselines in challenging MARL problems.

4.4 Google Football Testbed

Experimental Setting: We evaluate MAPPO in several GRF academy scenarios, namely 3v.1,
counterattack (CA) easy and hard, corner, pass-shoot (PS), and run-pass-shoot (RPS). In these
scenarios, a team of agents attempts to score a goal against scripted opponent player(s). As the agents’
local observations contain a full description of the environment state, there is no distinction between
MAPPO and IPPO; for consistency, we label the results with PPO in Table 2 as “MAPPO”. We utilize
GRF’s dense-reward setting in which all agents share a single reward which is the sum of individual
agents’ dense rewards. We compute the success rate over 100 rollouts of the game and report the
average success rate over the last 10 evaluations, averaged over 6 seeds.

Experimental Results: We compare MAPPO with QMix and several SOTA methods, including
CDS, a method that augments the environment reward with an intrinsic reward, and TiKick, an
algorithm which combines online RL fine-tuning and large-scale offline pre-training. All methods
except TiKick are trained for 25M environment steps in all scenarios with the exception of CA (hard)
and Corner, in which methods are trained for 50M environment steps. We generally observe in
Table 2 that MAPPO achieves comparable or superior performance to other off-policy methods in all
settings, despite not utilizing an intrinsic reward as is done in CDS. Comparing MAPPO to QMix,
we observe that MAPPO clearly outperforms QMix in each scenario, again while using the same

5

Scen. MAPPO QMix CDS TiKick

3v.1 88.03(1.06) 8.12(2.83) 76.60(3.27) 76.88(3.15)

CA(easy) 87.76(1.34) 15.98(2.85) 63.28(4.89) /
CA(hard) 77.38(4.81) 3.22(1.60) 58.35(5.56) 73.09(2.08)

Corner 65.53(2.19) 16.10(3.00) 3.80(0.54) 33.00(3.01)

PS 94.92(0.68) 8.05(3.66) 94.15(2.54) /
RPS 76.83(1.81) 8.08(4.71) 62.38(4.56) 79.12(2.06)

Table 2: Average evaluation success rate and standard deviation (over six seeds) on GRF scenarios for
different methods. All values within 1 standard deviation of the maximum success rate are marked
in bold. We separate TiKick from the other methods as it uses pretrained models and thus does not
constitute a direct comparison.

Players Metric MAPPO IPPO SAD VDN

2 Avg. 23.89(0.02) 24.00(0.02) 23.87(0.03) 23.83(0.03)

Best 24.23(0.01) 24.19(0.02) 24.01(0.01) 23.96(0.01)

3 Avg. 23.77(0.20) 23.25(0.33) 23.69(0.05) 23.71(0.06)

Best 24.01(0.01) 23.87(0.03) 23.93(0.01) 23.99(0.01)

4 Avg. 23.57(0.13) 22.52(0.37) 23.27(0.26) 23.03(0.15)

Best 23.71(0.01) 23.06(0.03) 23.81(0.01) 23.79(0.00)

5 Avg. 23.04(0.10) 20.75(0.56) 22.06(0.23) 21.28(0.12)

Best 23.16(0.01) 22.54(0.02) 23.01(0.01) 21.80(0.01)

Table 3: Best and Average evaluation scores of MAPPO, IPPO, SAD, and VDN on Hanabi-Full.
Results are reported over at-least 3 seeds.

number of training samples. MAPPO additionally outperforms TiKick on 4/5 scenarios, despite the
fact that TiKick performs pre-training on a set of human expert data.

4.5 Hanabi Testbed

Experimental Setting: We evaluate MAPPO and IPPO in the full-scale Hanabi game with varying
numbers of players (2-5 players). We compare MAPPO and IPPO to strong off-policy methods,
namely SAD, a Q-learning variant that has been successful in Hanabi, and Value Decomposition
Networks (VDN). All methods do not utilize auxiliary tasks. Because each agent’s local observation
does not contain information about the agent’s own cards3, MAPPO utilizes, as input to the value
function, a global-state that adds the agent’s own cards to the local observation. VDN agent takes only
the local observations as input. SAD agent takes as input not only the local observation provided by
the environment, but also the greedy actions of other players in the past time steps. Due to algorithmic
restrictions, no additional global information is utilized by SAD and VDN during centralized training.
We follow [15] and report the average returns across at-least 3 random seeds as well as the best score
achieved by any seed. The returns are averaged over 10k games.

Experimental Results: The reported results for SAD and VDN are obtained from [15]. All methods
are trained for at-most 10B environment steps. As demonstrated in Table 3, MAPPO is able to
produce results comparable or superior to the best and average returns achieved by SAD and VDN in
nearly every setting, while utilizing the same number of environment steps. This demonstrates that
even in environments such as Hanabi which require reasoning over other players’ intents based on
their actions, MAPPO can achieve strong performance. IPPO is comparable with MAPPO with 2
agents. However, when the agent number grows, MAPPO shows a clear margin of improvement over
both IPPO and off-policy methods, which suggests that a centralized critic input can be crucial.

5 Factors Influential to PPO’s Performance

In this section, we analyze five factors that we find are especially influential to MAPPO’s performance:
value normalization, value function inputs, training data usage, policy/value clipping, and batch size.
We find that these factors exhibit clear trends in terms of performance; using these trends, we give
best-practice suggestions for each factor. We study each factor in a set of appropriate representative

3The local observations in Hanabi contain information about the other agent’s cards and game state.

6

environments. All experiments are performed using MAPPO (i.e., PPO with centralized value
functions) for consistency. More results can be found in Appendix E.

Figure 2: Impact of value normalization on MAPPO’s performance in SMAC and MPE.

5.1 Value Normalization

Through the training process of MAPPO, value targets can drastically change due to differences in
the realized returns, leading to instability in value learning. To mitigate this issue, we standardize the
targets of the value function by using running estimates of the average and standard deviation of the
value targets. Concretely, during value learning, the value network regresses to normalized target
values. When computing the GAE, we use the running average to denormalize the output of the value
network so that the value outputs are properly scaled. We find that using value normalization never
hurts training and often significantly improves the final performance of MAPPO.

Empirical Analysis: We study the impact of value-normalization in the MPE spread environment
and several SMAC environments - results are shown in Fig. 2. In Spread, where the episode
returns range from below -200 to 0, value normalization is critical to strong performance. Value
normalization also has positive impacts on several SMAC maps, either by improving final performance
or by reducing the training variance.

Suggestion 1: Utilize value normalization to stabilize value learning.

5.2 Input Representation to Value Function

The fundamental difference between many multi-agent CTDE PG algorithms and fully decentralized
PG methods is the input to the value network. Therefore, the representation of the value input
becomes an important aspect of the overall algorithm. The assumption behind using centralized value
functions is that observing the full global state can make value learning easier. An accurate value
function further improves policy learning through variance reduction.

Past works have typically used two forms of global states. [22] use a concatenation of local
observations (CL) global state which is formed by concatenating all local agent observations. While
it can be used in most environments, the CL state dimensionality grows with the number of agents
and can omit important global information which is unobserved by all agents; these factors can make
value learning difficult. Other works, particularly those studying SMAC, utilize an Environment-
Provided global state (EP) which contains general global information about the environment state
[11]. However, the EP state typically contains information common to all agents and can omit
important local agent-specific information. This is true in SMAC, as shown in Fig. 3.

To address the weaknesses of the CL and EP states, we allow the value function to leverage both
global and local information by forming an Agent-Specific Global State (AS) which creates a global
state for agent i by concatenating the EP state and oi, the local observation for agent i. This provides
the value function with a more comprehensive description of the environment state. However, if there
is overlap in information between oi and the EP global state, then the AS state will have redundant
information which unnecessarily increases the input dimensionality to the value function. As shown
in Fig. 3, this is the case in SMAC. To examine the impact of this increased dimensionality, we create
a Featured-Pruned Agent-Specific Global State (FP) by removing repeated features in the AS state.

Emperical Analysis: We study the impact of these different value function inputs in SMAC, which
is the only considered benchmark that provides different options for centralized value function inputs.
The results in Fig. 4 demonstrate that using the CL state, which is much higher dimensional than
the other global states, is ineffective, particularly in maps with many agents. In comparison, using
the EP global state achieves stronger performance but notably achieves subpar performance in more
difficult maps, likely due to the lack of important local information. The AS and FP global states

7

Figure 3: Different value function inputs with example features contained in each state (SMAC-
specific). IND refers to using decentralized inputs (agents’ local observations), EP refers to the
environment provided global state, AS is an agent-specific global state which concatenates EP and
IND, and FP is an agent-specific global state which prunes overlapping features from AS. EP omits
important local data such as agent ID and available actions.

Figure 4: Effect of different value function input representations (described in Fig. 3).

both achieve strong performance, with the FP state outperforming AS states on only several maps.
This demonstrates that state dimensionality, agent-specific features, and global information are all
important in forming an effective global state. We note that using the FP state requires knowledge
of which features overlap between the EP state and the agents’ local observations, and evaluate
MAPPO with this state to demonstrate that limiting the value function input dimensionality can
further improve performance.

Suggestion 2: When available, include both local, agent-specific features and global features in the
value function input. Also check that these features do not unnecessarily increase the input dimension.

(a) effect of different training epochs.

(b) effect of different mini-batch numbers.

Figure 5: Effect of epoch and mini-batch number on MAPPO’s performance in SMAC.

5.3 Training Data Usage

An important feature of PPO is the use of importance sampling for off-policy corrections, allowing
sample reuse. [14] suggest splitting a large batch of collected samples into mini-batches and training
for multiple epochs. In single-agent continuous control domains, the common practice is to split a
large batch into about 32 or 64 mini-batches and train for tens of epochs. However, we find that in
multi-agent domains, MAPPO’s performance degrades when samples are re-used too often. Thus,
we use 15 epochs for easy tasks, and 10 or 5 epochs for difficult tasks. We hypothesize that this
pattern could be a consequence of non-stationarity in MARL: using fewer epochs per update limits
the change in the agents’ policies, which could improve the stability of policy and value learning.
Furthermore, similar to the suggestions by [17], we find that using more data to estimate gradients
typically leads to improved practical performance. Thus, we split the training data into at-most two
mini-batches and avoid mini-batching in the majority of situations.

8

(a) effect of different training epochs.

(b) effect of different mini-batch numbers.

Figure 6: Effect of epoch and mini-batch number on MAPPO’s performance in MPE.

Experimental Analysis: We study the effect of training epochs in SMAC maps in Fig. 5(a). We
observe detrimental effects when training with large epoch numbers: when training with 15 epochs,
MAPPO consistently learns a suboptimal policy, with particularly poor performance in the very
difficult MMM2 and Corridor maps. In comparison, MAPPO performs well using 5 or 10 epochs.
The performance of MAPPO is also highly sensitive to the number of mini-batches per training epoch.
We consider three mini-batch values: 1, 2, and 4. A mini-batch of 4 indicates that we split the training
data into 4 mini-batches to run gradient descent. Fig. 5(b) demonstrates that using more mini-batches
negatively affects MAPPO’s performance: when using 4 mini-batches, MAPPO fails to solve any of
the selected maps while using 1 mini-batch produces the best performance on 22/23 maps. As shown
in Fig. 6, similar conclusions can be drawn in the MPE tasks. In Reference and Comm, the simplest
MPE tasks, all chosen epoch and minibatch values result in the same final performance, and using 15
training epochs even leads to faster convergence. However, in the harder Spread task, we observe a
similar trend to SMAC: fewer epochs and no mini-batch splitting produces the best results.

Suggestion 3: Use at most 10 training epochs on difficult environments and 15 training epochs on
easy environments. Additionally, avoid splitting data into mini-batches.

Figure 7: Effect of different clipping strengths on MAPPO’s performance in SMAC.

5.4 PPO Clipping

Another core feature of PPO is the use of clipped importance ratio and value loss to prevent the policy
and value functions from drastically changing between iterations. Clipping strength is controlled by
the ϵ hyperparameter: large ϵ values allow for larger updates to the policy and value function. Similar
to the number of training epochs, we hypothesize that policy and value clipping can control the
non-stationarity caused by the changing of all agents’ policies during training. For small ϵ, the agents’
policies are likely to change less per update, which we posit improves overall learning stability at the
potential expense of learning speed. In single-agent settings, a common ϵ value is 0.2 [9, 1].

Experimental Analysis: We study the impact of PPO clipping strengths, controlled by the ϵ
hyperparameter, in SMAC (Fig. 7). Note that ϵ is the same for both policy and value clipping. We
generally that with small ϵ terms such as 0.05, MAPPO’s learning speed is slowed in several maps,
including hard maps such as MMM2 and 3s5z vs. 3s6z. However, final performance when using
ϵ = 0.05 is consistently high and the performance is more stable, as demonstrated by the smaller
standard deviation in the training curves. We also observe that large ϵ terms such as 0.2, 0.3, and
0.5, which allow for larger updates to the policy and value function per gradient step, often result in
sub-optimal performance.

9

Suggestion 4: For the best PPO performance, maintain a clipping ratio ϵ under 0.2; within this range,
tune ϵ as a trade-off between training stability and fast convergence.

(a) SMAC (b) GRF
Figure 8: Effect of batch size on MAPPO’s performance in SMAC and GRF. Red bars show the
final win-rates. The blue bars show the number of environment steps required to achieve a strong
win-rate (80% or 90% in SMAC and 60% in GRF) as a measure of sample efficiency. “NaN” means
such a win-rate was never reached. The x-axis specifies the batch-size as a multiple of the batch-
size used in our main results. A sufficiently large batch-size is required to achieve the best final
performance/sample efficiency; further increasing the batch size may hurt sample efficiency.

5.5 PPO Batch Size

During training updates, PPO samples a batch of on-policy trajectories which are used to estimate the
gradients for the policy and value function objectives. Since the number of mini-batches is fixed in our
training (see Sec. 5.3), a larger batch generally will result in more accurate gradients, yielding better
updates to the value functions and policies. However, the accumulation of the batch is constrained by
the amount of available compute and memory: collecting a large set of trajectories requires extensive
parallelism for efficiency and the batches need to be stored in GPU memory. Using an unnecessarily
large batch-size can hence be wasteful in terms of required compute and sample-efficiency.

Experimental Analysis: The impact of various batch sizes on both final task performance and
sample-efficiency is demonstrated in Fig. 8. We generally observe that in nearly all cases, there is
a critical batch-size setting. When the batch-size is below this critical point, the final performance
of MAPPO is poor, and further tuning the batch size produces the optimal final performance and
sample-efficiency. However, continuing to increase the batch size may not result in improved final
performance and in-fact can worsen sample-efficiency.

Suggestion 5: Utilize a large batch size to achieve best task performance with MAPPO. Then, tune
the batch size to optimize for sample-efficiency.

6 Conclusion

This work demonstrates that PPO, an on-policy policy gradient RL algorithm, achieves strong results
in both final returns and sample efficiency that are comparable to the state-of-the-art methods on
a variety of cooperative multi-agent challenges, which suggests that properly configured PPO can
be a competitive baseline for cooperative MARL tasks. We also identify and analyze five key
implementation and hyperparameter factors that are influential in PPO’s performance in these settings.
Based on our empirical studies, we give concrete suggestions for the best practices with respect
to these factors. There are a few limitations in this work that point to directions for future study.
Firstly, our benchmark environments all use discrete action spaces, are all cooperative, and in the
vast majority of cases, contain homogeneous agents. In future work, we aim to test PPO on a wider
range of domains such as competitive games and MARL problems with continuous action spaces
and heterogeneous agents. Furthermore, our work is primarily empirical in nature, and does not
directly analyze the theoretical underpinnings of PPO. We believe that the empirical analysis of our
suggestions can serve as starting points for further analysis into PPO’s properties in MARL.

Acknowledgments

This research is supported by NSFC (U20A20334, U19B2019 and M-0248), Tsinghua-Meituan Joint
Institute for Digital Life, Tsinghua EE Independent Research Project, Beijing National Research
Center for Information Science and Technology (BNRist), Beijing Innovation Center for Future Chips
and 2030 Innovation Megaprojects of China (Programme on New Generation Artificial Intelligence)
Grant No. 2021AAA0150000.

10

References
[1] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël

Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly,
and Olivier Bachem. What matters for on-policy deep actor-critic methods? a large-scale study.
In International Conference on Learning Representations, 2021.

[2] Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell, Bob McGrew,
and Igor Mordatch. Emergent tool use from multi-agent autocurricula. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[3] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song,
Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The Hanabi
challenge: A new frontier for AI research. Artificial Intelligence, 280:103216, 2020.

[4] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal
Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé
de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon
Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep
reinforcement learning. CoRR, abs/1912.06680, 2019.

[5] Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, and Stefano V. Albrecht. Scaling
multi-agent reinforcement learning with selective parameter sharing, 2021.

[6] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. AAAI/IAAI, 1998(746-752):2, 1998.

[7] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip
H. S. Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the
starcraft multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

[8] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pages 1329–1338, 2016.

[9] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and
trpo. In International Conference on Learning Representations, 2020.

[10] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International Conference on Machine
Learning, pages 1407–1416, 2018.

[11] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon White-
son. Counterfactual multi-agent policy gradients. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[12] Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326,
2017.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

[14] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[15] Hengyuan Hu and Jakob N Foerster. Simplified action decoder for deep multi-agent reinforce-
ment learning. In International Conference on Learning Representations, 2020.

[16] Shiyu Huang, Wenze Chen, Longfei Zhang, Shizhen Xu, Ziyang Li, Fengming Zhu, Deheng
Ye, Ting Chen, and Jun Zhu. Tikick: Towards playing multi-agent football full games from
single-agent demonstrations, 2021.

11

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

[17] Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In International
Conference on Learning Representations, 2020.

[18] Shariq Iqbal, Christian A. Schröder de Witt, Bei Peng, Wendelin Böhmer, Shimon Whiteson,
and Fei Sha. Ai-qmix: Attention and imagination for dynamic multi-agent reinforcement
learning. CoRR, abs/2006.04222, 2020.

[19] Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain Gelly.
Google research football: A novel reinforcement learning environment. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020, pages 4501–4510. AAAI Press, 2020.

[20] Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang.
Celebrating diversity in shared multi-agent reinforcement learning, 2021.

[21] Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

[22] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Neural Information Processing
Systems (NIPS), 2017.

[23] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-
agent populations. arXiv preprint arXiv:1703.04908, 2017.

[24] Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

[25] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Bench-
marking multi-agent deep reinforcement learning algorithms in cooperative tasks. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round
1), 2021.

[26] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. In NeurIPS,
2020.

[27] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 4295–4304. PMLR, 10–15 Jul 2018.

[28] Mikayel Samvelyan, Tabish Rashid, Christian Schröder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. CoRR, abs/1902.04043, 2019.

[29] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[31] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
In International Conference on Machine Learning, pages 5887–5896. PMLR, 2019.

[32] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems,
pages 2085–2087, 2018.

[33] J. K. Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin Black. Revisiting
parameter sharing in multi-agent deep reinforcement learning, 2021.

12

[34] George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard Turner, Zoubin Ghahramani, and
Sergey Levine. The mirage of action-dependent baselines in reinforcement learning. In
International conference on machine learning, pages 5015–5024. PMLR, 2018.

[35] Oriol Vinyals, Igor Babuschkin, M Wojciech Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, H David Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, P John
Agapiou, Max Jaderberg, S Alexander Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, L Tom Paine, Caglar Gulcehre, Ziyu Wang,
Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris
Apps, and David Silver. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, pages 1–5, 2019.

[36] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. {QPLEX}: Duplex
dueling multi-agent q-learning. In International Conference on Learning Representations, 2021.

[37] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
RODE: Learning roles to decompose multi-agent tasks. In International Conference on Learning
Representations, 2021.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We explain

why our work does not have potential negative societal impacts in Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] This is included
in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] This is included in the supplemental material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Table results report standard deviation over random seeds.
Training Curves shade the standard deviation.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

13

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related Works
	PPO in Multi-Agent Settings
	Preliminary
	MAPPO and IPPO
	Implementation Details

	Main Results
	Testbeds and Baselines
	MPE Testbed
	SMAC Testbed
	Google Football Testbed
	Hanabi Testbed

	Factors Influential to PPO's Performance
	Value Normalization
	Input Representation to Value Function
	Training Data Usage
	PPO Clipping
	PPO Batch Size

	Conclusion

