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A MAANS Details

Multi-Agent Active Neural SLAM (MAANS) consists of 4 modules (1) Neural
SLAM; (2) Map Refiner and Map Merger; (3) Local Policy and Local Planner;
(4) Multi-agent Spatial Planner (MSP). Here we describe each module in detail.

A.1 Neural SLAM

The Neural SLAM Module for map reconstruction and pose estimation and the
Local Policy for action output in our work are directly derived from ANS [2].
Neural SLAM Module trained by supervised learning provides each agent an
updated reconstructed map individually at every timestep. In order to recover a
metric map with high accuracy, Neural SLAM Module takes as input current RGB
observation oy, current and last pose x}_;., from sensors, last pose estimation
Z;_1 and last map prediction m;_1, and outputs a map prediction m; and a
pose estimation Z;, where ¢ represents the current timestep. Note that noises are
introduced in simulation to mimic realistic situations.

A.2 Map Refiner and Map Merger

For a better choice of cooperative global goals, we designed a Map Refiner for
arranging all maps into the same coordinate system and a Map Merger for shared
map reconstruction. More concretely, Map Refiner obtains the egocentric global
map from a series of past egocentric local maps and unifies the global maps from
all agents in the same coordinate system based on the pose estimates. Besides,
there is a dilemma that the egocentric local map contains part of redundant
space if an agent reaches the edge of the house, resulting in a large portion of
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invisible region around the explorable area. To promise an effective CNN feature
extraction and more accurate global goal generation, we clip the unexplorable
boundary and enlarge the explorable region.

Map Merger leverages all enlarged global maps from the Map Refiner to
compose a shared map through max-pooling operator for each pixel location,
which indicates the probability of being explored or the obstacle. As a result, the
local planner produces the sub-goals on the merged global map, which is much
more informative. Note that the merged map is merely employed in local planner
to plan path, but not introduced in MSP, which only utilizes agents’ egocentric
global maps to infer global goals.

A.3 Local Planner and Local Policy

To effectively reach a global goal, the agent first plans a path to this long-term
goal in a manually merged global map using Local Planner, which is mainly based
on Fast Marching Method (FMM) [8], and generates a sequence of short-term
sub-goals. The Local Policy learns to produce next action via imitation learning.
The input of the Local Policy includes the relative angle and distance from the
current position to the short-term goal as well as current RGB observations.

A.4 Multi-agent Spatial Planner

Input Representation The shared CNN Feature Extractor in Multi-agent
Spatial Planner firstly takes in a 240 x 240 map with 6 channels as input,
containing

— Obstacle channel: indicating the likelihood of being an obstacle of each pixel

— Explored region channel: denoting the probability of being explored of each
pixel

— One-hot position channel: describing the position of the agent with an one-hot
metric map.

— Trajectory channel: expressing the history trace of each agent with exponen-
tially decaying weight to emphasize the direction of the trace:

Vi o— 1 current position
Y eV),' otherwise

where V! denotes the trajectory channel at timestep t.

— One-hot global goal channel: demonstrating the position of the last global
goal in an one-hot manner.

— One-hot Goal history channel: recording all the previous global goals of the
agent.

Besides CNN spatial maps, we also introduce additional features, including
agent-specific embeddings of its identity and current position and grid features,
i.e., the embeddings of the relative coordinate of each grid to the agent position
as well as the embedding of the previous global goal.
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— Position Embedding: described as trainable G x G x D parameters as part of
the neural network. Two types of position embeddings are used to distinguish
from the decision-making agent and it’s partners. Note that G and D is
respectively 8 and 128.

— Relative Coordinate Embedding: describing the relative position of the agent
with the G x G coarse-grained maps.

— Previous Global Goal Embedding: expressing the relative position of last
global goal with the G x G coarse-grained maps.

These embeddings are all concatenated with features outputted by CNN
feature extractors and then fed into MSP.

Hierarchical Action Space MAANS adopts a hierarchical action space to
represent global goals, where a global goal is consequently composed of a high-
level discrete region g = (g5, 9y) and a low-level fine-grained continuous point
p = (Pz,py). To be more specific, the whole world-frame occupancy map is
discretized into 8 x 8 uniform regions and a global goal (z;,y;) is decomposed
into two levels,
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In MSP, the region head outputs a 64-dim vector denoting the categorical
distribution of g, while the point head outputs a bivariate Gaussian distribution
N (i, X). Point p is obtained by applying Sigmoid to the Gaussian random
variables, i.e.,

ﬁ = (ﬁxaﬁy) NN(M? Z)
P, = Sigmoid(p, )
py = Sigmoid(py)

Reward Function We design the reward in a team-based fashion, comprising
of the coverage reward, the success reward, the overlap penalty and the time
penalty. For a unified representation, Ratio® indicates the total coverage ratio
at timestep t, Area® is the the total coverage area at timestep ¢, and Areal
represents the explored area of agent k. The details of 4 kinds of reward gained
by agent k at timestep ¢ are listed as below.

— Coverage Reward: The coverage reward is a combination of the team
coverage reward and the individual coverage reward. Team coverage reward
illustrates the increment of explored area at timestep ¢, and is proportional
to AArea® = Area® — Area'~!. For the consideration of individual contri-
bution to the whole team exploration, the individual coverage reward is
proportional to AAreal = Areal, — Area’ ' () Area'~!. We remark that
AAreal, # Areal, — Area?l, which suppresses cooperation but leads to the
individual exploration. The coefficient is 0.02.
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— Success Reward: To encourage agent k achieves the target coverage ratio
as much as possible, we give the bonus 1 - Ratio® to the agent if the total
coverage rate is reached in 95%, and 0.5 - Ratio® when 90% coverage rate is
realized.

— Overlap Penalty: The overlap penalty is applied to reduce repetitive
exploration among agents so as to enhance cooperation capability. It is
described as:

~AAL 10y X 0.01, Ratio! < 0.9
—AA! x 0.006,0.9 < Ratio® < 0.95

overlap

0, Ratio® > 0.95

AAvaerlap

lapped explored area Al ap

practical, the szerlapk,u = Areal () Area!”! between agent k and agent u
transforms into the sum of a one-hot map, where the grid on the map will
be valued when its total value of two agents’ explored probability is greater
than 1.2.

— Time Penalty: For the sake of an efficient exploration, we propose the time

penalty:

— At g1 . .
= Apvertap — Aoverlap denotes the increment of the average over-

¢ between each two agents at timestep ¢. In

—0.002, Ratio' < 0.9
—0.001,0.9 < Ratiot < 0.95
—0.0002, 0.95 < Ratiot < 0.97

The linear combination of four parts is the final team-based reward. Note
that all the explored and obstacle maps are in the scale of 5¢m for each grid and

the measurement unit of all the area is m?2.

Architecture CNN feature extractor is composed of 5 convolution layers as
well as max pooling layers. Hyperparameters of these layers are listed in Table 1.
Except the last layer, each layer is followed by a max pooling layer with kernel
size 2.

The core part of MSP, Spatial-Teamformer, contains several blocks, each
of which consists of two layers, i.e. an Individual Spatial Encoder and a Team
Relation Encoder. Both Individual Spatial Encoder and Team Relation En-
coder are self-attention layers with residual connection. We remark that the
self-attention mechanism in MSP is exactly the same as transformer encoder in
[4]. Hyperparameters of Spatial-Teamformer are listed in Table 2.

B Baselines

We implemented 6 classical planning-based methods, including 3 single-agent
methods and 3 multi-agent baselines.
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Layer Out Channels Kernel Size Stride Padding

1 32 3 1 1
2 64 3 1 1
3 128 3 1 1
4 64 3 1 1
5 32 3 2 1

Table 1. CNN feature extractor hyperparameters

hyperparameters value
# of attention heads 4
attention head dimension 32
attention hidden Size 128

## of Spatial-Teamformer blocks 2
Table 2. MSP hyperparameters

B.1 Single-agent Baselines

— Nearest [11] selects the nearest frontier as global goal [12] via breadth first
search on the merged global map.

— Utility [6] chooses the frontier with the largest information gain [1].

— RRT [9] generates a collision-free random tree rooted at the agent’s current
location. After collecting enough tree nodes that lie on unexplored region, i.e.
frontiers, RRT chooses the one with the highest utility u(p) = IG(p) — N(p),
where IG(p) and N(p) are respectively the normalized information gain
and navigation cost of p. Pseudocode of RRT is shown in Algorithm 1. In
each iteration, a random point p is draw and a new node t is generated by
expanding from s to p with distance L, where s is the closest tree node to
p. If segment (s,t) has no collision with obstacles in M, ¢ is inserted into
the target list or the tree according to whether t is in unexplored area or
not. Finally, the goal is chosen from the target list with the largest utility
u(e) = IG(c) — N(c) where IG(c) is the information gain and N(c) is the
navigation cost. IG(c) is computed by the number of unexplored grids within
1.5m to ¢, as mentioned above. N(c) is computed as the euclidean distance
between the agent location and point c. To keep these two values at the same
scale, we normalize IG(-) and N(-) to [0,1] w.r.t all cluster centers.

B.2 Multi-agent Baselines

— APF [14] first computes a potential field F' based on explored occupancy map
and current agent locations, and then follows the fastest descending direction
of F' to find a frontier as the global goal. Resistance force among agents is
introduced in APF to avoid repetitive exploration. Pseudocode of APF is
provided in Algorithm 2. Line 6-12 computes the resistance force between
every pair of agents where D is the influence radius. In line 13-18, distance
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maps starting from cluster centers are computed and the corresponding
reciprocals are added into the potential field so as one agent approaches the
frontier, the potential drops. Here w, is the weight of cluster ¢, which is the
number of targets in this cluster. Consequently an agent would prefer to
seek for frontiers that are closer and with more neighboring frontiers. Line
20-25 shows the process to find the fastest potential descending path, at
each iteration the agent moves to the cell with the smallest potential among
all neighboring ones. T" is the maximum number of iterations and Cyepeqt is
repeat penalty to avoid agents wandering around cells with same potentials.
WMA-RRT [7] WMA-RRT is a multi-agent variant of RRT. Pseudocode of
WMA-RRT is provided in Algorithm 3. By maintaining a rooted tree together,
agents share information to finish exploration. To impose cooperation using
the shared tree, WMA-RRT uses a locking mechanism to avoid agents explor-
ing same part of the tree and restricts agents to walking along the edge of the
tree to ensure a strict system. Agents choose a node in the tree as a global
goal and mark whether a subtree has been completedly searched. Although
this is a multi-agent variant of RRT, we empirically found it perform much
worse than RRT. We found this is because the locking mechanism actually
restricts agent behaviors greatly and the algorithm itself is incompatible with
active SLAM. For the former, agents are often forced not to explore large
open areas which require multi-agent effort because locked by another agent.
For the latter, WMA-RRT was originally designed for the case a ground-truth
mapping is given and adding new nodes into the tree during exploration
would cause mis-labeled completed subtree. Also, WMA-RRT do not perform
value estimation over the nodes, making agents committed to branches that
do not increase coverage much. Therefore, though WMA-RRT is guaranteed
to reach fully coverage, it’s inherently not suitable for the setting to maximize
coverage ratio. As a comparison between RRT and WMA-RRT, WMA-RRT
only utilizes RRT to expand tree while perform multi-agent planning using a
strict tree-search procedure while RRT uses the random tree equipped with
utility estimation to do planning. For detailed description of the algorithm,
we encourage readers to check out [7].

Voronoi [5] The voronoi-based method first partitions the map via voronoi
partition and assigns components to agents so that each agent owns parts
that are closest to it. Then each agent finds its own global goal by finding
a frontier point with largest potential as in Utility within its own partition.
In this way, duplicated exploration is be avoided. Pseudocode of Voronoi is
provided in Algorithm 4.

Finally, we also evaluate the performance of random policies for references.

To eliminate negative impact of visual blind area, the area within a distance of
2.5m to the agent is virtually marked as explored when choosing frontiers so that
these baselines would output far enough global goals. The number of unexplored
grids within a distance of 1.5m to a frontier p is defined as the information
gain. All these baselines regenerate new global goals every 15 time steps, which
is consistent with MSP. Case studies and failure modes of these methods are
provided in Section F.3.
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Algorithm 1 Rapid-exploring Random Tree (RRT)

Input : Map M and agent location loc.
Output : Selected frontier goal

1: NodeList < {loc}, Targets < {}

2: 10

3: while i < T and |Targets| < Niarget do
4: 14—1+1

5:  p < arandom point

6: S — arg minye NodeList Hu - P||2
7.t <+ Steer(s,p, L)

8: if No_Collision(M, s,t) then

9: if ¢ lies in unexplored area then
10: Targets < Targets + {t}
11: else
12: NodeList < NodeList + {t}
13: end if
14:  end if
15: end while
16: C < clusters of points in Targets.
17: goal < argminccc IG(c) — N(c)
18: return goal
C Evaluation Metrics

We select 3 behavior statistics metric to show different characteristics of particular
exploration methods.

— Coverage: Coverage represents the ratio of areas explored by the agents

D

to the entire explorable space in the indoor scene at the end of the episode.
Higher Coverage implies more effective exploration. A cell of 5em X 5em is
considered explored/covered when the 2D projection on the floor of some
depth image in the exploration history covers this cell.

Steps: Steps is the number of timesteps used by agents to achieve a coverage
ratio of 90% within an episode. Fewer Steps implies faster exploration.
Mutual Overlap: For effective collaboration, each agent should visit regions
different from those explored by its teammates. We measure the average
overlapping explored area over each pair of agents when the coverage ratio
reaches 90%, which we call Mutual Overlap. Mutual Overlap denotes the
normalized value of mutual overlap. Lower Mutual Overlap suggests better
multi-agent coordination.

Training Details

We adopt Multi-Agent Proximal Policy Optimization (MAPPO) [13], a multi-
agent extension of PPO, to train MSP. The pseudocode of MAPPO is provided
in Algorithm 5. Detailed hyper-parameters are listed in Table 3.
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Algorithm 2 Artificial Potential Field (APF)

Input : Map M, number of agents n and agent locations loc; .. .loc,.
Output : Selected goals for each agent

1: P <« frontiers in M

2: C < clusters of frontiers P

3: goals < an empty list

4: fori=1—ndo

5:  F < zero potential field

6: // Compute Resistance force

7. forj=1—ndo

8: for unoccupied grid p € M do

9: if j # ¢ and ||p — locj||2 < D then

10: Fp < Fp+kp - (D — ||p — locj]|2)

11: end if

12: end for

13:  end for

14: for ce C do

15: Run breadth-first search to compute distance map dis starting from c
16: F+ F—dis™ ' w.

17:  end for

18: u < loci,ent <+ 0

19:  while v ¢ M and F, is not a local minima and ent < T do
20: ent <—cent + 1

21: F, + F, + C’repeat

22: U 4= arg Minye Neigh(u) £o

23:  end while

24:  append u to the end of goals

25: end for

26: return goals
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Algorithm 3 Weighted Multi-Agent RRT

Find Next Point(a):
if Node a is a leaf node then
return a
end if
for edge e = (a,b) € Child(a) in clock-wise order do
if e is not locked and subtree rooted at node b is not completed then
Lock edge e for LockTime timesteps
return Find Next Point(b)
end if
end for
Mark subtree rooted at a as completed
return Parent node of a

Main():
Reset the environment env
PHASE <« "Gather Stage"
Initialize rooted tree T' = ()
while env is not done do
if agents are close enough then
RootLoc < mean coordination of all agents
Initialize root node Root = Node(RootLoc)
for all agentsa=1—n do
T = T U {(Root, Node(AgentLocation|al))}
end for
PHASE < "Exploration Stage"
end if
for all agents a =1 —n do
if PHASE = "Gather Stage" then
goal, < mean coordination of all agents

else
goal, < Find_Next Goal(AgentNode[a])
end if
end for
Compute directional action via goals,--- , goaln

Move one step and receiver observations
Update global merged map
if PHASE = "Exploration Stage" then
Add new nodes into T' given new global merged map using standard RRT
end if
end while
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A

lgorithm 4 Voronoi-based method

Input : Map M and all agents’ locations locy, - - - ,locy,.
Output : Selected frontier goals for all agents

1

11:
12:

: Partition the map M via voronoi parition into triangle blocks B = {b1,--- ,bm}
Initialize P = [[],- -, []], i.e. n empty lists
for all blocks i =1 — m do
dis1,disa, -« - ,dis, < distance of all agents to block b;.
a < arg ming dis,
P, + P, U {bz}
end for
goal + 0
for all agentsa=1—n do
goal, < frontier point within P, that has largest information gain.
end for
return goal

Algorithm 5 MAPPO

Initialize 0, the parameters for policy m and ¢, the parameters for critic V, using
Orthogonal initialization (Hu et al., 2020)
Set learning rate «
while step < stepmax do
set data buffer D = {}
for i = 1 to num_rollouts do
7 = [| empty list
fort=1to T do
for all agents a do
pi") =m(0”;0)
u® ~ pf”
v =V (si"; )
end for
Execute actions u¢, observe 7¢, S¢41, Ot41
T +=[St, 0¢, Ut, T't, St41, Ot 41
end for
Compute advantage estimate A via GAE on 7
Compute reward-to-go R on 7 and normalize
D=DuUr
end for
for epoch k=1,..., K do
b < sequence of random mini-batches from D with all agent data
for batch cin b do
Adam update 6 on L(0) with batch ¢
Adam update ¢ on L(¢) with batch ¢
end for
end for

end while
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common hyperparameters value
gradient clip norm 10.0
GAE lambda 0.95
gamma 0.99
value loss huber loss
huber delta 10.0
mini batch size batch size / mini-batch
optimizer Adam
optimizer epsilon le-5
weight decay 0
network initialization Orthogonal
use reward normalization True
use feature normalization True
learning rate 2.5e-5
parallel environment threads 10
number of local steps 15

Table 3. MAPPO Hyperparameters

As for policy distillation, an expert network m(g, z, y|s, 9,@) is trained, where
g is the region head, (z,y) is the point head, s is the state, for each training scenes
and team size of 2. After that, a student network is trained m(g,z,y|s,) via
performing behavior cloning from these expert networks. The student network is
trained in dagger style: for each episode, we first collect data using 7 (g, z, y|s, é),
and then run several updates to optimize the output of student using past
experience. The objective function to minimize is sum of Lg(é), which is the KL
divergence between the student region distribution m,(s, é) and teacher region
distribution my(s, 9,@), and L, ,(0), which is the square error loss between point
head of student and that of teacher. Policy distillation uses Adam optimizer with
2.5e — 5 learning rate.

E Experimental Setting

E.1 Datasets

We follow the dataset used in Active Neural SLAM (ANS) [2]. The original
Gibson Challenge dataset [10], which could be used with Habitat Simulator,
provides 72 training and 14 validation scenes. Note that Gibson testing set is
not public but rather held on an online evaluation server for the PointGoal task,
so the validation set is used as the testing instead of hyper-parameter tuning.
We have made substantial efforts to check every single scene from the Gibson
Challenge dataset and have to exclude a large portion of scenes not suitable for
multi-agent exploration, including (i) scenes that have large disconnected regions;
and (ii) scenes that have multiple floors (agents can not go upstairs) so that
the agents are not possible to reach 90% coverage of the entire house. Note that
disconnected region is not an issue for semantic or point navigation tasks.
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We categorize the remaining scenes into 23 training scenes, including 9 small
scenes, 9 middle scenes and 5 large scenes based on explorable area, as well as
10 testing scenes, which including 5 small scenes, 4 middle scenes and 1 large
scene. Note that the validation set of the original Gibson Challenge dataset,
i.e. the testing set, has 14 scenes, of which 8 scenes are eligible for our task,
including 5 small scenes, 1 middle scene and 1 large scene. Since most scenes in
the testing set are too small for multi-agent exploration task, we additionally
add 3 middle scenes to the testing set. The common training paradigm for
visual exploration is to randomly sample training scenes or team sizes at each
training episode [3]. However, we empirically observe that different Habitat scenes
and team sizes may lead to drastically different exploration difficulties. During
training, gradients from different configurations may negatively impact each
other. Hence, our solution is to train a separate policy on each map and use
policy distillation to extract a meta policy to tackle this problem.

E.2 Assumption of Birth Position

We assume the agents has access to the birth location of each other while
the locations during an episode are estimated using Neural SLAM module. The
merged global map is fused using the estimated locations and the birth place.

E.3 Episode Length

First, we empirically found that as the number of agents grows, even random
exploration can be particularly competitive (as shown in Table 6), which, we
believe, is due to the limited explorable space of Gibson scenes. Hence, we only test
up to 4 agents and argue that the 2-agent case is the most challenging. Regarding
the episode length, it is estimated according to the number of timesteps when
the strongest single-agent planning-based method, RRT, achieves 95% coverage.
Note that if the horizon is too long (e.g., 1000, which is used in ANS), almost
all the methods will have the same the final coverage rate. In addition, the
Mutual Overlap and Steps metrics are all estimated before the agents reach a
90% coverage, which do not depend on the episode length. The choice of a higher
re-planning frequency (e.g., re-plan per 15 timestep) is also due to a shorter
episode horizon?. All the baselines use the same planning frequency.

F Additional Experiment Results

F.1 Fixed Team Size

Trained with Team size = 2 We first report the performance of MAANS
and all baseline methods with a fixed team size of N = 2 agents on both 9
representative training scenes and unseen testing scenes in Table 4 and Table 5.

4 All the agents will re-generate their personal long-term global goals using MSP in a
synchronous manner every 15 timesteps while ANS [2] re-plans every 25 timesteps.
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MAANS outperforms all the planning-based baselines with a clear margin in every
evaluation metric, particularly the Steps, on both training and testing scenes.
We can observe that Steps of testing scenes is overall fewer than training scenes
since we use 9 middle scenes for training while the testing set has more small
scenes. And as the scene size grows, the performance of planning-based methods
degrades a lot. We directly apply the policies trained with N = 2 agents to the
scenes of N = 3,4 agents respectively. The zero-shot generalization performance
of MAANS compared with all the baselines on 9 representative training scenes
and testing scenes is shown in Table 6 and Table 7. We can observe that MAANS
still outperforms planning-based methods on training scenes. And MAANS could
even achieve comparable performance on testing scenes despite MAANS having
neither seen the testing scenes nor the novel team sizes.

Sce. Metrics Random Nearest Utility RRT MAANS
Training Mut. Over. | 0.66(0.01) 0.53(0.02) 0.68(0.01) 0.53(0.02) 0.42(0.01)
Sce. Steps | 273.56(1.38) 246.79(3.90) 236.15(3.61) 199.59(3.27) 158.55(2.25)

Coverage 1+ 0.86(0.00)  0.91(0.01)  0.92(0.01) 0.96(0.00)  0.97(0.00)

Testing Mut Over. | 0.66(0.02) 0.58(0.01) 0.69(0.01) 0.57(0.02) 0.54(0.02)
Sce. Steps | 193.83(2.80) 166.23(3.96) 161.28(2.32) 157.29(2.59) 144.16(2.52)
Coverage T 0.93(0.00)  0.95(0.00)  0.95(0.00) 0.95(0.01)  0.96(0.00)

Table 4. Performance of MAANS and single-agent baselines with a fixed size of N = 2
agents on both training and testing scenes.

Sce. Metrics Random APF WMA-RRT  Voronoi. MAANS
Training Mut. Over. | 0.66(0.01) 0.61(0.01) 0.61(0.01) 0.44(0.01) 0.42(0.01)
Sce. Steps | 273.56(1.38) 251.41(3.15) 268.20(2.24) 237.04(2.95) 158.55(2.25)

Coverage 1 0.86(0.00)  0.90(0.01) 0.87(0.01)  0.93(0.00)  0.97(0.00)

Testing MUt Over. | 0.66(0.02) 0.57(0.01) 0.64(0.01) 0.51(0.01) 0.54(0.02)
Sce. Steps | 193.83(2.80) 181.18(4.17) 198.92(3.83) 156.68(3.21) 144.16(2.52)
Coverage 1 0.93(0.00)  0.93(0.01)  0.91(0.01) 0.96(0.01) 0.96(0.00)

Table 5. Performance of MAANS and multi-agent baselines with a fixed size of N = 2
agents on both training and testing scenes.

Trained with Team size = 3 Here we additionally report the performance
of all the baseline methods and MAANS trained with a fixed team size of
N = 3 agents on 9 representative training scenes and testing scenes in Table 8
and Table 9. Except for comparable performance to Voronoi on testing scenes,
MAANS consistently outperforms other planning-based baselines in all metrics on
both training scenes and testing scenes. When training with team size 3, MAANS
also exhibits surprising zero-shot transfer ability to various team sizes on training
and testing scenes as shown in Table 10 and Table 11. More concretely, MAANS
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# Agent Metrics Random Nearest Utility RRT MAANS

Training  Scenes

Mut. Over. | 0.54(0.01)  0.46(0.01)  0.58(0.00) 0.44(0.01)  0.42(0.01)

3 Steps | 221.29(1.80) 188.58(2.02) 180.82(2.25) 155.13(3.26) 127.88(1.91)
Coverage 1 0.82(0.01)  0.91(0.00)  0.94(0.00) 0.95(0.01)  0.97(0.00)
Mut. Over. | 0.49(0.01)  0.43(0.01)  0.52(0.01) 0.36(0.01)  0.42(0.01)
4 Steps | 163.11(0.77) 154.75(2.16) 151.30(3.03) 140.57(1.78) 114.75(1.69)
Coverage T 0.87(0.00) 0.88(0.01) 0.91(0.01)  0.92(0.01) 0.96(0.00)
Testing  Scenes
5 Mut. Over. | 0.55(0.01) 0.51(0.01) 0.59(0.01) 0.45(0.01) 0.53(0.01)

Steps | 145.90(2.80) 131.04(3.53) 128.46(3.04) 128.33(1.66) 122.48(2.22)

Coverage T 0.94(0.00)  0.95(0.00) 0.96(0.00) 0.95(0.01)  0.96(0.00)

Mut. Over. | 0.48(0.01)  0.46(0.01)  0.54(0.01) 0.41(0.01)  0.50(0.01)

4 Steps | 116.94(1.61) 108.23(1.24) 110.14(1.93) 111.30(1.58) 109.07(2.02)
Coverage 1 0.93(0.01)  0.94(0.00) 0.94(0.01) 0.93(0.01) 0.94(0.00)

Table 6. Zero-shot generalization performance of MAANS trained with a fixed team
size N = 2 and single-agent methods to novel team sizes on training and testing scenes.

# Agent Metrics Random APF WMA-RRT Voronoi MAANS

Training  Scenes

Mut. Over. | 0.54(0.01) 0.45(0.01) 0.54(0.01) 0.37(0.01)  0.42(0.01)

3 Steps | 221.29(1.80) 207.20(2.41) 210.01(2.68) 180.27(2.51) 127.88(1.91)
Coverage T 0.82(0.01) 0.87(0.01) 0.87(0.01) 0.95(0.00) 0.97(0.00)
Mut. Over. | 0.49(0.01) 0.35(0.01) 0.49(0.01) 0.34(0.01) 0.42(0.01)
4 Steps | 163.11(0.77) 170.59(1.06) 168.07(1.41) 147.01(2.38) 114.75(1.69)
Coverage 1 0.87(0.00) 0.79(0.01)  0.82(0.01) 0.93(0.00) 0.96(0.00)
Testing  Scenes
Mut. Over. | 0.55(0.01) 0.40(0.01) 0.56(0.01) 0.43(0.01) 0.53(0.01)
3

Steps | 145.90(2.80) 152.62(3.71) 161.59(3.60) 119.98(2.31) 122.48(2.22)

Coverage 1 0.94(0.00)  0.92(0.01) 0.89(0.02) 0.96(0.00)  0.96(0.00)

Mut. Over. | 0.48(0.01) 0.30(0.01) 0.52(0.01)  0.39(0.01) 0.50(0.01)

4 Steps | 116.94(1.61) 133.68(1.35) 136.88(3.08) 101.90(2.36) 109.07(2.02)
Coverage 1 0.93(0.01) 0.88(0.01) 0.84(0.02) 0.95(0.00)  0.94(0.00)

Table 7. Zero-shot generalization performance of MAANS trained with a fixed team
size N = 2 and multi-agent methods to novel team sizes on training and testing scenes.
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trained with a fixed team size N = 3 shows much better performance than
all planning-based methods on training scenes and comparable performance on
testing scenes. Besides, we can observe that MAANS trained with a fixed team
size N = 2 and MAANS trained with a fixed team size N = 3 are better than each
other with corresponding training team size. MAANS trained with a fixed team
size N = 3 performs better in 4-agent case, showing 0.07 less MutualOverlap
and 8 fewer Steps on training scenes and 0.04 less MutualOverlap and 6 fewer
Steps on testing scenes.

Sce. Metrics Random Nearest Utility RRT MAANS
=4
Training Mut. Over. | 0.54(0.01) 0.46(0.01) 0.58(0.00) 0.44(0.01) 0.33(0.01)
Sce. Steps | 221.29(1.80) 188.58(2.02) 180.82(2.25) 155.13(3.26) 121.99(1.91)

Coverage T 0.82(0.01)  0.91(0.00) 0.94(0.00) 0.95(0.01) 0.97(0.00)

Testing MUt Over- | 055(0.01) 0.51(0.01) 0.59(0.01) 0.45(0.01) 0.48(0.01)
Sce. Steps | 145.90(2.80) 131.04(3.53) 128.46(3.04) 128.33(1.66) 121.62(1.96)
Coverage 1 0.94(0.00)  0.95(0.00) 0.96(0.00) 0.95(0.01) 0.96(0.00)

Table 8. Performance of MAANS and single-agent baselines with a fixed size of N =3
agents on both training and testing scenes.

Sce. Metrics Random APF WMA-RRT Voronoi MAANS
Training Mut. Over. | 0.54(0.01) 0.45(0.01) 0.54(0.01) 0.37(0.01) 0.33(0.01)
Sce. Steps | 221.29(1.80) 207.20(2.41) 210.01(2.68)) 180.27(2.51) 121.99(1.91)

Coverage T 0.82(0.01)  0.87(0.01)  0.87(0.01)  0.95(0.00)  0.97(0.00)

Testing Mut- Over. L 0.55(0.01) 0.40(0.01)  0.56(0.01) ~ 0.43(0.01)  0.48(0.01)
Sce. Steps | 145.90(2.80) 152.62(3.71) 161.59(3.60) 119.98(2.31) 121.62(1.96)
Coverage 1 0.94(0.00)  0.92(0.01)  0.89(0.02)  0.96(0.00)  0.96(0.00)

Table 9. Performance of MAANS and multi-agent baselines with a fixed size of N = 3
agents on both training and testing scenes.

F.2 Varying Team Size

We further consider the setting where the team size varies within an episode.
We summarize the zero-shot generalization performance of MAANS compared
with the planning-based baselines on training scenes in Table 12 and Table 13.
We use "N; = Ny" to denote that each episode starts with N; agents and the
team size immediately switches to Ny after 90 timesteps. More concretely, in
an episode, max(Ny, N3) agents are set in the beginning, and N»-N; agents are
unable to move until timesteps 90 reaches in the increased team size scenarios.
The setting is reversed in the decreased ones. We remark that MAANS trained
by fixed team size N = 2 or N = 3 is separately presented in experiments, which
is called MAANS(N=2) or MAANS(N=3).
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# Agent Metrics Random Nearest Utility RRT MAANS

Training  Scenes

Mut. Over. | 0.66(0.01) 0.53(0.02) 0.68(0.01) 0.53(0.02)  0.33(0.01)

2 Steps | 273.56(1.38) 246.79(3.90) 236.15(3.61) 199.59(3.27) 167.24(2.12)
Coverage 1 0.86(0.00)  0.91(0.01)  0.92(0.01) 0.96(0.00)  0.96(0.00)
Mut. Over. | 0.49(0.01) 0.43(0.01) 0.52(0.01) 0.36(0.01) 0.34(0.01)
4 Steps | 163.11(0.77) 154.75(2.16) 151.30(3.03) 140.57(1.78) 106.12(2.19)
Coverage T 0.87(0.00) 0.88(0.01) 0.91(0.01) 0.92(0.01) 0.96(0.00)
Testing  Scenes
) Mut. Over. | 0.66(0.02) 0.58(0.01) 0.69(0.01) 0.57(0.02) 0.52(0.01)

Steps | 193.83(2.80) 166.23(3.96) 161.28(2.32) 157.29(2.59) 154.95(2.95)
Coverage T 0.93(0.00)  0.95(0.00)  0.95(0.00) 0.95(0.01)  0.96(0.00)
Mut. Over. | 0.48(0.01) 0.46(0.01) 0.54(0.01) 0.41(0.01)  0.46(0.01)
4 Steps | 116.94(1.61) 108.23(1.24) 110.14(1.93) 111.30(1.58) 103.52(1.98)
Coverage 1 0.93(0.01)  0.94(0.00)  0.94(0.01) 0.93(0.01)  0.95(0.00)

Table 10. Zero-shot generalization performance of MAANS trained with a fixed team
size N = 3 and single-agent methods to novel team sizes on training and testing scenes.

# Agent Metrics Random APF WMA-RRT Voronoi MAANS

Training  Scenes

Mut. Over. | 0.66(0.01) 0.61(0.01) 0.61(0.01)  0.44(0.01)  0.33(0.01)

2 Steps | 273.56(1.38) 251.41(3.15) 268.20(2.24) 237.04(2.95) 167.24(2.12)
Coverage T 0.86(0.00) 0.90(0.01) 0.87(0.01) 0.93(0.00) 0.96(0.00)
Mut. Over. | 0.49(0.01) 0.35(0.01) 0.49(0.01) 0.34(0.01) 0.34(0.01)
1 Steps | 163.11(0.77) 170.59(1.06) 168.07(1.41) 147.01(2.38) 106.12(2.19)
Coverage 1 0.87(0.00) 0.79(0.01) 0.82(0.01) 0.93(0.00) 0.96(0.00)
Testing  Scenes
Mut. Over. | 0.66(0.02) 0.57(0.01) 0.64(0.01) 0.51(0.02) 0.52(0.01)
2 Steps | 193.83(2.80) 181.18(4.17) 198.92(3.83) 156.68(3.21) 154.95(2.95)
Coverage T 0.93(0.00) 0.93(0.01) 0.91(0.01) 0.96(0.01) 0.96(0.00)
Mut. Over. | 0.48(0.01) 0.30(0.01) 0.52(0.01) 0.39(0.01) 0.46(0.01)
4 Steps | 116.94(1.61) 133.68(1.35) 136.88(3.08) 101.90(2.36) 103.52(1.98)

Coverage T 0.93(0.01) 0.88(0.01) 0.84(0.02) 0.95(0.00) 0.95(0.00)
Table 11. Zero-shot generalization performance of MAANS trained with a fixed team
size N = 3 and multi-agent methods to novel team sizes on training and testing scenes.
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In scenarios where the team size increases, though RRT still performs the
best among the planning-based baselines, MAANS outperforms RRT with a
clear margin for 25 fewer Steps in 2 = 4 setting and 35 fewer Steps in others.
While as the team size decreases, the performance between MAANS and classical
methods varies more widely, which shows that MAANS has a 35 fewer Steps
in the comparison of the best baseline, RRT. Besides, MAANS has the best
result in the metrics of mutual overlap ratio and coverage. We consider the case
is more challenging where the team size decreases and the share information
gain becomes less shapely, therefore the baselines could not adjust the strategy
immediately.

When we compare MAANS(N=2) with MAANS(N=3), MAANS(N=3) has a
comparable performance with a lower Mutual Overlap ratio to the other. It
indicates that training with a fixed team size N = 3 helps MAANS grasp the
capability of cooperation better so that the strategy is more stable and inflexible
in a varying team size situation.

We summarize the zero-shot generalization performance of MAANS compared
with the planning-based baselines on testing scenes in Table 14 and Table 15. In
cases where the team size increases, MAANS still produces substantially better
performances, especially Steps, which suggests that MAANS has the capability to
adaptively adjust its strategy. Regarding the cases where the team size decreases,
MAANS shows slightly worse performance than the best single-agent baseline,
RRT, and the best multi-agent baseline, Voronoi. We remark that decreasing
the team size is particularly challenging since the absence of some agents might
immediately leave a large part of the house unexplored and consequently, the
team should immediately update their original plan with drastically different
goal assignments.
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MAANS MAANS

# Agent Metrics Random Nearest Utility RRT (N=2) (N=3)

Increase Number of Agents
Mut. Over. | 0.54(0.01) 0.43(0.01) 0.56(0.01) 0.36(0.01) 0.30(0.01) 0.25(0.01)
Steps | 223.63(2.16) 211.73(1.96) 210.88(1.30) 185.94(1.83) 148.82(2.01) 146.34(1.76)
Coverage T 0.86(0.01)  0.89(0.01) 0.90(0.00) 0.94(0.00) 0.96(0.00) 0.96(0.00)
Mut. Over. | 0.42(0.01) 0.37(0.01) 0.47(0.00) 0.31(0.01) 0.26(0.01) 0.22(0.01)
Steps | 175.89(0.64) 174.06(0.72) 174.55(0.69) 165.43(0.97) 142.96(1.24) 138.22(1.36)
Coverage T 0.82(0.01) 0.81(0.01) 0.81(0.00) 0.88(0.01) 0.94(0.00) 0.94(0.00)
Mut. Over. | 0.45(0.01) 0.38(0.01) 0.49(0.01) 0.26(0.01) 0.29(0.01) 0.24(0.01)
3=>4 Steps | 170.90(1.19) 165.85(0.80) 165.82(0.72) 155.15(2.18) 125.26(1.46) 119.03(1.36)
Coverage 1 0.85(0.01) 0.85(0.00) 0.87(0.01) 0.90(0.01) 0.95(0.00) 0.96(0.00)

2=3

2=14

Decrease Number of Agents

Mut. Over. | 0.48(0.01) 0.39(0.01) 0.48(0.01) 0.35(0.01) 0.41(0.01) 0.33(0.01)
Steps | 225.51(2.57) 213.16(1.65) 209.87(1.75) 187.93(1.98) 145.14(2.83) 142.09(1.98)
Coverage 1 0.84(0.01) 0.86(0.01) 0.88(0.00) 0.91(0.00) 0.95(0.00) 0.95(0.00)

Mut. Over. | 0.41(0.01) 0.36(0.01) 0.42(0.01) 0.32(0.01) 0.40(0.01) 0.33(0.01)
Steps | 173.36(1.08) 168.89(1.12) 167.54(1.30) 157.40(2.56) 127.35(2.08) 118.93(2.30)
Coverage 1 0.81(0.00) 0.82(0.01) 0.83(0.01) 0.86(0.01) 0.93(0.00) 0.93(0.00)
Mut. Over. | 0.44(0.01) 0.39(0.01) 0.47(0.00) 0.33(0.01) 0.41(0.01) 0.33(0.01)
Steps | 168.32(1.24) 161.87(1.08) 159.96(1.48) 147.61(1.78) 119.59(2.31) 111.24(1.54)
Coverage 1 0.85(0.00) 0.85(0.00) 0.88(0.01) 0.90(0.01) 0.95(0.00) 0.95(0.00)

Table 12. Performance of MAANS and single-agent baselines with a varying team size
on training scenes.

3=2

4=2
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MAANS MAANS

# Agent Metrics Random APF WMA-RRT  Voronoi (N—2) (N—3)

Increase Number of Agents

Mut. Over. | 0.54(0.01) 0.42(0.00) 0.49(0.00) 0.35(0.01) 0.30(0.01) 0.25(0.01)
Steps | 223.63(2.16) 225.35(0.97) 221.85(0.00) 200.91(2.32) 148.82(2.01) 146.34(1.76)
Coverage T 0.86(0.01)  0.82(0.01) 0.85(0.00) 0.92(0.00) 0.96(0.00) 0.96(0.00)
Mut. Over. | 0.42(0.01) 0.31(0.01) 0.44(0.01) 0.30(0.01) 0.26(0.01) 0.22(0.01)
Steps | 175.89(0.64) 178.77(0.13) 178.91(0.33) 170.50(0.88) 142.96(1.24) 138.22(1.36)
Coverage T 0.82(0.01) 0.68(0.01) 0.67(0.01) 0.85(0.01) 0.94(0.00) 0.94(0.00)
Mut. Over. | 0.45(0.01) 0.32(0.01) 0.45(0.00) 0.31(0.01) 0.29(0.01) 0.24(0.01)
Steps | 170.90(1.19) 175.35(0.56) 173.64(0.41) 159.23(1.50) 125.26(1.46) 119.03(1.36)
Coverage 1 0.85(0.01) 0.74(0.01) 0.79(0.00) 0.90(0.00) 0.95(0.00) 0.96(0.00)

2=3

2=14

3=4

Decrease Number of Agents

Mut. Over. | 0.48(0.01) 0.38(0.01) 0.44(0.00) 0.33(0.01) 0.41(0.01) 0.33(0.01)
Steps | 225.51(2.57) 225.51(1.32) 226.14(0.00) 206.94(2.50) 145.14(2.83) 142.09(1.98)
Coverage 1 0.84(0.01) 0.78(0.01) 0.81(0.00) 0.89(0.01) 0.95(0.00) 0.95(0.00)

Mut. Over. | 0.41(0.01) 0.32(0.01) 0.40(0.00) 0.30(0.01) 0.40(0.01) 0.33(0.01)
Steps | 173.36(1.08) 176.79(0.65) 176.38(0.00) 165.23(2.80) 127.35(2.08) 118.93(2.30)
Coverage 1 0.81(0.00) 0.68(0.01) 0.73(0.00) 0.83(0.01) 0.93(0.00) 0.93(0.00)

Mut. Over. | 0.44(0.01) 0.33(0.01) 0.44(0.00) 0.32(0.01) 0.41(0.01) 0.33(0.01)
Steps | 168.32(1.24) 173.94(0.81) 171.85(0.00) 155.65(2.79) 119.59(2.31) 111.24(1.54)
Coverage 1 0.85(0.00) 0.73(0.01) 0.78(0.00) 0.89(0.01) 0.95(0.00) 0.95(0.00)

Table 13. Performance of MAANS and multi-agent baselines with a varying team size
on training scenes.

3=2

4=2
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MAANS MAANS

# Agent Metrics Random Nearest Utility RRT (N=2) (N=3)

Increase Number of Agents

Mut. Over. | 0.52(0.01) 0.47(0.01) 0.55(0.02)  0.43(0.01)  0.46(0.01)  0.41(0.01)
Steps | 159.85(3.60) 144.60(3.45) 143.14(1.93) 136.42(2.41) 134.11(2.88) 131.96(1.80)
Coverage T 0.93(0.01) 0.95(0.01) 0.95(0.00) 0.96(0.01) 0.96(0.00) 0.96(0.00)
Mut. Over. | 0.43(0.01) 0.40(0.01) 0.47(0.01)  0.38(0.01)  0.43(0.01)  0.37(0.01)
Steps | 134.57(0.63) 129.13(1.86) 126.92(1.67) 122.42(1.85) 122.09(1.99) 116.66(4.51)
Coverage T 0.90(0.00) 0.91(0.01) 0.92(0.01)  0.92(0.00) 0.93(0.01) 0.93(0.01)
Mut. Over. | 0.46(0.01) 0.42(0.01) 0.49(0.01) 0.37(0.01) 0.45(0.01)  0.39(0.00)
Steps | 125.08(1.35) 116.96(1.42) 115.44(3.38) 119.02(1.32) 114.84(1.56) 110.04(0.54)
Coverage T 0.92(0.01)  0.93(0.00) 0.93(0.01)  0.92(0.01) 0.94(0.00) 0.94(0.00)

2=3

2=14

3=4

Decrease Number of Agents
Mut. Over. | 0.45(0.01) 0.41(0.01) 0.46(0.01) 0.39(0.01) 0.43(0.01)  0.40(0.00)
Steps | 167.98(2.06) 149.41(2.59) 146.73(3.44) 139.52(3.74) 145.43(3.44) 146.93(2.93)
Coverage 1 0.91(0.00) 0.94(0.00) 0.93(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.00)
Mut. Over. | 0.36(0.01) 0.33(0.01) 0.37(0.01) 0.31(0.00) 0.37(0.01)  0.34(0.00)
Steps | 140.37(1.80) 128.11(1.72) 127.40(0.49) 125.84(0.83) 129.73(2.73) 127.30(1.55)
Coverage T 0.88(0.01) 0.90(0.01) 0.90(0.01) 0.90(0.00) 0.90(0.01) 0.90(0.00)
Mut. Over. | 0.43(0.01) 0.39(0.00) 0.44(0.01) 0.35(0.01) 0.43(0.01)  0.39(0.01)
4=3 Steps | 127.46(1.64) 117.44(0.89) 114.56(2.28) 119.70(1.88) 116.74(1.38) 112.72(2.13)
Coverage T 0.91(0.01) 0.93(0.00) 0.93(0.01) 0.91(0.00) 0.93(0.01) 0.93(0.00)
Table 14. Performance of MAANS and single-agent baselines with a varying team size
on testing scenes.

3=2

4=2

MAANS MAANS

# Agent Metrics Random APF WMA-RRT Voronoi (N—2) (N—3)

Increase Number of Agents

Mut. Over. | 0.52(0.01) 0.38(0.02) 0.44(0.01) 0.32(0.02) 0.46(0.01)  0.41(0.01)
Steps | 159.85(3.60) 167.87(2.85) 176.89(5.70) 148.12(6.69) 134.11(2.88) 131.96(1.80)
Coverage T 0.93(0.01)  0.89(0.01) 0.88(0.01)  0.92(0.05)  0.96(0.00)  0.96(0.00)

Mut. Over. | 0.43(0.01) 0.26(0.01) 0.33(0.01)  0.24(0.01)  0.43(0.01)  0.37(0.01)
Steps | 134.57(0.63) 148.48(1.01) 157.48(1.50) 130.49(1.81) 122.09(1.99) 116.66(4.51)
Coverage T 0.90(0.00) 0.78(0.01)  0.69(0.02)  0.90(0.01)  0.93(0.01) 0.93(0.01)

2=3

2=4

Mut. Over. | 0.46(0.01) 0.28(0.01) 0.40(0.00)  0.30(0.00)  0.45(0.01)  0.39(0.00)
Steps | 125.08(1.35) 139.82(1.77) 141.80(1.53) 114.99(1.04) 114.84(1.56) 110.04(0.54)
Coverage T 0.92(0.01)  0.85(0.01) 0.83(0.01)  0.94(0.00) 0.94(0.00) 0.94(0.00)

3=4

Decrease Number of Agents

Mut. Over. | 0.45(0.01) 0.33(0.01) 0.51(0.01)  0.42(0.01)  0.43(0.01)  0.40(0.00)

=2 Steps | 167.98(2.06) 178.43(2.25) 171.87(2.53) 133.77(2.83) 145.43(3.44) 146.93(2.93)

Coverage T 0.91(0.00) 0.86(0.01) 0.87(0.01)  0.95(0.01) 0.94(0.01)  0.94(0.00)

Mut. Over. | 0.36(0.01) 0.23(0.00) 0.47(0.01)  0.38(0.00)  0.37(0.01)  0.34(0.00)

1=2 Steps | 140.37(1.80) 151.69(1.60) 144.66(1.46) 115.97(1.93) 129.73(2.73) 127.30(1.55)

Coverage T 0.88(0.01) 0.78(0.01) 0.81(0.01)  0.93(0.00)  0.90(0.01)  0.90(0.00)

s Mut. Over. | 0.43(0.01) 0.27(0.01) 0.48(0.00)  0.39(0.01)  0.43(0.01)  0.39(0.01)
Ny

Steps | 127.46(1.64) 142.86(2.31) 140.68(0.17) 106.92(2.78) 116.74(1.38) 112.72(2.13)
Coverage © 0.91(0.01)  0.84(0.01)  0.82(0.00)  0.94(0.01) 0.93(0.01)  0.93(0.00)
Table 15. Performance of MAANS and multi-agent baselines with a varying team size
on testing scenes.
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F.3 Case Studies

We implemented several planning-based methods as baselines, including Nearest,
Utility, APF, RRT and additionally a voronoi-based method plus a multi-agent
variant of RRT, WMA-RRT. While these methods are respectively tested under
environments with ideal assumptions, we empirically found some of them do not
work well under our setting with realistic perception and noises.

— Sensitive to realistic noise. Nearest, Utility, APF and the voronoi-based
method all apply cell-level goal searching. We empirically found that they
share a same failure mode, that is, trying to approach a cell that is wrongly
estimated as explorable, even when the mapping only has minor cell-level
error. The planning-based baseline RRT do not perform cell-level planning
but in a geometric way, thus it’s robust to mapping noise.

— Naive estimation of future value. Both Utility and RRT select candidate
frontier with highest utility, which is computed as the number of unexplored
cells within a small distance. Such estimation of future values is very short-
sighted. In contrast, TANS, by using neural network, could perform more
complicated inference about utility of exploring one part of the map.

— Strict restriction over robot behaviors. Among the planning-based
baselines, both APF and WMA-RRT adopt a formally-designed cooperation
system. However their cooperation schemes both imposes great restriction
to agents’ behaviors. APF includes resistance force among agents to avoid
duplicated exploration. In WMA-RRT, agents share a same tree and follow a
locking-and-searching method to do cooperation. However, in cases where
it’s better for agents to go through the same place simultaneously, which is
pretty common, the resistance force in APF and the locking mechanism in
WMA-RRT prevent agents from the optimal strategy. Meanwhile, WMA-
RRT restricts agents to follow paths in the shared tree, losing the benefit of
accidental coverage brought by random search.

We provide case studies with corresponding graphics in Fig. 1-6. The red
angles indicate the agents and their direction. The blue points indicate the
global goals selected by the agents.
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Fig. 1. Sensitive to Realistic Noise. Utility, Nearest, APF and the voronoi-based method
performs cell-level goal searching, the above picture demonstrates a case when the agent
selects a cell that is estimated as "unexplored" because of mapping error.

Fig. 2. Faulty Estimation of Value. In the above situation, Utility selects a cell at the
corner of the room as a global goal since it’s nearby space is unexplored. However, with
prior knowledge about building structures, one should infer that such point should not
be chosen.

Fig. 3. Poor Cooperation. RRT performs planning independently, it’s possible that
agents choose close frontiers as goals, leading to duplicated exploration.
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Fig. 4. APF Resistance Force. APF achieves cooperation by introducing resistance
force among agents. In above situation, the yellow lines demonstrate agents’ paths to
their corresponding global goal. Due to the resistance force, the agent on the left is
forced to choose a sub-optimal global goal instead of frontiers in the more promising
part indicated by the purple triangle.

Fig. 5. WMA-RRT Locking Mechanism. In WMA-RRT, agents cooperatively maintain
a tree and use a locking mechanism to avoid duplicated exploration. The above picture
shows a case where agent on the right has to stay where it is since the path is locked
by another agent.

Fig. 6. Incompatible with Active Mapping. Specially, WMA-RRT algorithm is inherently
incompatible with the active mapping process. When new cells are classified as obstacles,
some nodes and edges in the tree would become invalid and WMA-RRT could not
adapt to such change. In the above picture, agents still try to approach selected points
even the tree edges and nodes are no longer valid.
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