
Learning Efficient Multi-Agent Cooperative
Visual Exploration

Chao Yu1∗, Xinyi Yang1∗, Jiaxuan Gao2∗, Huazhong Yang1,
Yu Wang1, and Yi Wu23

1 Department of Electronic Engineering, Tsinghua University
2 Institute for Interdisciplinary Information Sciences, Tsinghua University

3 Shanghai Qi Zhi Institute
* Equal contribution

{zoeyuchao,jxwuyi}@gmail.com
Abstract. We tackle the problem of cooperative visual exploration where
multiple agents need to jointly explore unseen regions as fast as possible
based on visual signals. Classical planning-based methods often suffer
from expensive computation overhead at each step and a limited ex-
pressiveness of complex cooperation strategy. By contrast, reinforcement
learning (RL) has recently become a popular paradigm for tackling this
challenge due to its modeling capability of arbitrarily complex strategies
and minimal inference overhead. In this paper, we extend the state-of-the-
art single-agent visual navigation method, Active Neural SLAM (ANS), to
the multi-agent setting by introducing a novel RL-based planning module,
Multi-agent Spatial Planner (MSP). MSP leverages a transformer-based
architecture, Spatial-TeamFormer, which effectively captures spatial rela-
tions and intra-agent interactions via hierarchical spatial self-attentions.
In addition, we also implement a few multi-agent enhancements to process
local information from each agent for an aligned spatial representation and
more precise planning. Finally, we perform policy distillation to extract a
meta policy to significantly improve the generalization capability of final
policy. We call this overall solution, Multi-Agent Active Neural SLAM
(MAANS). MAANS substantially outperforms classical planning-based
baselines for the first time in a photo-realistic 3D simulator, Habitat. Code
and videos can be found at https://sites.google.com/view/maans.

Keywords: Multi-agent Reinforcement Learning, Visual Exploration

1 Introduction
Visual exploration [42] is an important task for building intelligent embodied
agents and has been served as a fundamental building block for a wide range of
applications, such as scene reconstruction [1, 22], autonomous driving [3], disaster
rescue [27] and planetary exploration [52]. In this paper, we consider a multi-
agent exploration problem, where multiple homogeneous robots simultaneously
explore an unknown spatial region via visual and sensory signals in a cooperative
fashion. The existence of multiple agents enables complex cooperation strategies
to effectively distribute the workload among different agents, which could lead to
remarkably higher exploration efficiency than the single-agent counterpart.

Planning-based solutions have been widely adopted for robotic navigation
problems for both single-agent and multi-agent scenarios [4, 46, 55]. Planning-
based methods require little training and can be directly applied to different

2 C. Yu et al.

scenarios. However, these methods often suffer from limited expressiveness ca-
pability on coordination strategies, require non-trivial hyper-parameter tuning
for each test scenario, and are particularly time-consuming due to repeated
re-planning at each decision step. By contrast, reinforcement learning (RL) has
been promising solution for a wide range of decision-making problems [29, 34],
including various visual navigation tasks [6, 9, 46]. An RL-based agent is often
parameterized as a deep neural network and directly produces actions based on
raw sensory signals. Once a policy is well trained by an RL algorithm, the robot
can capture arbitrarily complex strategies and produce real-time decisions with
efficient inference computation (i.e., a single forward-pass of neural network).

However, training effective RL policies can be particularly challenging. This
includes two folds: (1) learning a cooperative strategy over multiple agents in
an end-to-end manner becomes substantially harder thanks to an exponentially
large action space and observation space when tackling the exploration task
based on visual signals; (2) RL policies often suffer from poor generalization
ability to different scenarios or team sizes compared with classical planning-based
approaches. Hence, most RL-based visual exploration methods focus on the
single-agent case [6, 9, 46] or only consider a relatively simplified multi-agent
setting (like maze or grid world [57]) of a fixed number of agents [31].

In this work, we develop Multi-Agent Active Neural SLAM (MAANS), the
first RL-based solution for cooperative multi-agent exploration that substan-
tially outperforms classical planning-based methods in a photo-realistic physical
simulator, Habitat [47]. MAANS extends the single-agent Active Neural SLAM
method [46] to the multi-agent setting. In MAANS, an agent consists of 4 compo-
nents, a neural SLAM module, a planning-based local planner, a local policy for
control, and the most critical one, a novel Multi-agent Spatial Planner (MSP).
which is an RL-trained planning module that can capture complex intra-agent
interactions via a self-attention-based architecture, Spatial-TeamFormer, and
produce effective navigation targets for a varying number of agents. We also
implement a map refiner to align the spatial representation of each agent’s local
map, and a map merger, which enables the local planner to perform more precise
sub-goal generation over a manually combined approximate 2D map. Finally,
instead of directly running multi-task RL over all the training scenes, we first
train a single policy on each individual scene and then use policy distillation to
extract a meta policy, leading to a much improved generalization capability,

We conduct thorough experiments in a photo-realistic physical simulator,
Habitat, and compare MAANS with a collection of classical planning-based
methods and RL-based variants. Empirical results show that MAANS has a
20.56% and 7.99% higher exploration efficiency on training and testing scenes
than the best planning-based competitor. The learned policy can further generalize
to novel team sizes in a zero-shot manner as well.

2 Related Work
2.1 Visual Exploration

In classical visual exploration solutions, an agent first locates its position and
re-constructs the 2D map based on its sensory signals, which is formulated

Learning Efficient Multi-Agent Cooperative Visual Exploration 3

as Simultaneous Localization and Mapping (SLAM) [16]. Then a search-based
planning algorithm will be adopted to generate valid exploration trajectories.
Representative variants include frontier-based methods [55, 64, 67], which al-
ways choose navigation targets from the explored region, and sampling-based
methods [28], which generate goals via a stochastic process. In addition to the
expensive search computation for planning, these methods do not involve learning
and thus have limited representation capabilities for particularly challenging
scenarios. Hence, RL-based methods have been increasingly popular for their
training flexibility and strong expressiveness power. Early methods simply train
navigation policies in a purely end-to-end fashion [9, 23] while recent works start
to incorporate the inductive bias of a spatial map structure into policy represen-
tation by introducing a differentiable spatial memory [17, 35, 38], semantic prior
knowledge [31] or learning a topological scene graph [2, 8, 65].

The Active Neural SLAM (ANS) method [6] is the state-of-the-art framework
for single-agent visual exploration, which takes advantage of both planning-based
and RL-based techniques via a modular design (details in Sec. 3.2). There are
also follow-up enhancements based on the ANS framework, such as improving
map reconstruction with occupancy anticipation [41] and incorporating semantic
signals into the reconstructed map for semantic exploration [7]. Our MAANS
can be viewed as a multi-agent extension of ANS with a few multi-agent-specific
components.
2.2 Multi-agent Cooperative Exploration
There have been works extending planning-based visual exploration solutions
to the multi-agent setting by introducing handcraft planning heuristics over a
shared reconstructed 2D map [5, 11, 12, 19, 36, 39, 62]. However, due to the lack
of learning, these methods may have the limited potential of capturing non-
trivial multi-agent interactions in challenging domains. By contrast, multi-agent
reinforcement learning (MARL) has shown its strong performances in a wide range
of domains [37], so many works have been adopting MARL to solve challenging
cooperative problems. Representative works include value decomposition for
approximating credit assignment [43, 51], learning intrinsic rewards to tackle
sparse rewards [21, 30, 59] and curriculum learning [32, 60].

However, jointly optimizing multiple policies makes multi-agent RL training
remarkably more challenging than its single-agent counterpart. Hence, these
end-to-end RL methods either focus on much simplified domains, like grid world
or particle world [57], or still produce poor exploration efficiency compared with
classical planning-based solutions. Our MAANS framework adopts a modular
design and is the first RL-based solution that significantly outperforms classical
planning-based baselines in a photo-realistic physical environment.

Finally, we remark that MAANS utilizes a centralized global planner MSP,
which assumes perfect communication between agents. There are also works on
multi-agent cooperation with limited or constrained communication [25, 40, 50,
15, 23, 58, 71], which are parallel to our focus.
2.3 Size-Invariant Representation Learning
There has been rich literature in deep learning studying representation learning
over an arbitrary number of input entities in deep learning [69, 70]. In MARL, the

4 C. Yu et al.

self-attention mechanism [56] has been the most popular policy architecture to
tackle varying input sizes [14, 24, 45, 61] or capture high-order relations [20, 33, 65,
68]. A concurrent work [58] also considers the zero-shot team-size adaptation in the
photo-realistic environment by learning a simple attention-based communication
channel between agents. By contrast, our works develop a much expressive network
architecture, Spatial-TeamFormer, which adopts a hierarchical self-attention-
based architecture to capture both intra-agent and spatial relationships and
results in substantially better empirical performance (see Section 5.4). Besides,
parameter sharing is another commonly used technique in MARL for team-size
generalization, which has been also shown to help reduce nonstationarity and
accelerate training [10, 54]. Our work follows this paradigm as well.

3 Preliminary
3.1 Task Setup
We consider a multi-agent coordination indoor active SLAM problem, in which
a team of agents needs to cooperatively explore an unknown indoor scene as
fast as possible. At each timestep, each agent performs an action among Turn
Left, Turn Right and Forward, and then receives an RGB image through a
camera and noised pose change through a sensor, which is provided from the
Habitat environment. We consider a decision-making setting by assuming perfect
communication between agents. The objective of the task is to maximize the
accumulative explored area within a limited time horizon.

3.2 Active Neural SLAM
The ANS framework [6] consists of 4 parts: a neural SLAM module, a RL-based
global planner, a planning-based local planner and a local policy. The neural
SLAM module, which is trained by supervised learning, takes an RGB image, the
pose sensory signals, and its past outputs as inputs, and outputs an updated 2D
reconstructed map and a current pose estimation. Note that in ANS, the output
2D map only covers a neighboring region of the agent location and always keeps
the agent at the egocentric position. For clarification, we call this raw output
map from the SLAM module a agent-centric local map.

The global planner in ANS takes in an augmented agent-centric local map,
which includes channels indicating explored regions, unexplored regions and
obstacles and the history trajectory, as its input, and outputs two real numbers
from two Gaussian distributions denoting the coordinate of the long-term goal.
This global planner is parameterized as a CNN policy and trained by the PPO
algorithm [48]. The local planner performs classical planning, i.e., Fast Marching
Method (FMM) [49], over the agent-centric local map towards a given long-term
goal, and outputs a trajectory of short-term sub-goals. Finally, the local policy
produces actions given an RGB image and a sub-goal and is trained by imitation
learning.

With the advantage of the modeling capability of arbitrarily complex strategy
in RL, an RL-based global planner which determines the global goals encourages
exploration faster. To apply RL training, we model the problem as a decentralized
partially observable Markov decision process (Dec-POMDP). Dec-POMDP is

Learning Efficient Multi-Agent Cooperative Visual Exploration 5

Fig. 1. Overview of Multi-Agent Active Neural SLAM (MAANS).

parameterized by ⟨S,A,O,R, P, n, γ, h⟩. n is the number of agents. S is the state
space, A is the joint action space. o(i) = O(s; i) is agent i’s observations at
state s. P (s′|s, a) defines the transition probability from state s to state s′ via
joint action a. R(s,A) is the shared reward function. γ is the discount factor.
The objective function is J(θ) = Ea,s[

∑
t γ

tR(st, at)]. In this task, the policy πθ

generates a global goal for each agent every decision-making step. The shared
reward function is defined as the accumulative environment reward every global
goal planning step.

4 Methodology
The overview of MAANS is demonstrated in Fig. 1, where each agent is presented
in a modular structure. When each agent receives the visual and pose sensory
signals from the environment, the Neural SLAM module corrects the sensor
error and performs SLAM in order to build a top-down 2D occupancy map that
includes explored area and discovered obstacles. Then we use a Map Refiner
to rotate each agent’s egocentric local map to a global coordinate system. We
augment these refined maps with each agent’s trajectory information and feed
these spatial inputs along with other agent-specific information to our core
planning module, Multi-agent Spatial Planner (MSP) to generate a global goal
as the long-term navigation target for each individual agent. We remark that
only estimated geometric information is utilized in this map fusion process. To
effectively reach a global goal, the agent first plans a path to this long-term
goal in a manually merged global map using FMM and generates a sequence of
short-term sub-goals. Finally, given a short-term sub-goal, a Local Policy outputs
the final navigation action based on the visual input and the relative spatial
distance as well as the relative angle to the sub-goal.

Note that the Neural SLAM module and the Local Policy do not involve
multi-agent interactions, so we directly reuse these two modules from ANS [46].
We fix these modules throughout training and only train the planning module
MSP using the MAPPO algorithm [66], a multi-agent variant of PPO [48]. Hence,
the actual action space for training MSP is the spatial location of the global goal.

4.1 Multi-agent Spatial Planner

Multi-agent Spatial Planner (MSP) is the core component in MAANS, which
could perform planning for an arbitrary number of agents. The full workflow of

6 C. Yu et al.

Fig. 2. Workflow of Multi-agent Spatial Planner (MSP), including a CNN-based Feature
Extractor, a Spatial-TeamFormer for representation learning and an Action Generator.

MSP is shown in Fig. 2. MSP first applies a weight-shared CNN feature extractor
to extract spatial feature maps from each agent’s local navigation trajectory and
then fuses team-wise information with hierarchical transformer-based network
architecture, Spatial-TeamFormer. Finally, an action generator will generate a
spatial global goal based on the features from Spatial-TeamFormer. Suppose
there are a total of N agents and the current decision-making agent has ID k.
We will describe how agent k generates its long-term goal via the 3 parts in MSP
in the following content. Note that due to space constraints, we only present the
main ideas while more computation details can be found in Appendix A.4.

CNN Feature Extractor For every single agent, we use its current location,
movement trajectory, previous goal, goal history, self-occupancy map and obstacle
map as inputs and convert them to a 480× 480 2D map with 6 channels over a
global coordinate system. We adopt a weight-shared CNN network with 5 layers
to process each agent’s input map, which produces a G×G feature map with
D = 32 channels. G corresponds to the discretization level of the scene. We
choose G = 8 in our work, leading to G2 grids corresponding to different spatial
regions in the underlying indoor scene.

Besides CNN spatial maps, we also introduce additional features, including
agent-specific embeddings of its current position and grid features, i.e., the
embeddings of the relative coordinate of each grid to the agent position as well
as the embedding of the previous global goal.

Spatial-TeamFormer With a total of N extracted G×G feature maps, we aim to
learn a team-size-invariant spatial representation over all the agents. Transformer
has been a particularly popular candidate for learning invariant representations,
but it may not be trivially applied in this case. Standard Transformer model in
NLP [56] tackles 1-dimensional text inputs, which ignores the spatial structure
of input features. Visual transformers [13] capture spatial relations well by
performing spatial self-attention. However, we have a total of N spatial inputs
from the entire team.

Learning Efficient Multi-Agent Cooperative Visual Exploration 7

Hence, we present a specialized architecture to jointly leverage intra-agent and
spatial relationships in a hierarchical manner, which we call Spatial-TeamFormer.
A Spatial-Teamformer block consists of two layers, i.e., an Individual Spatial
Encoder for capturing spatial features for each agent, and a Team Relation Encoder
for reasoning cross agents. Similar to visual transformer [13], Individual Spatial
Encoder focuses only on spatial information by performing a spatial self-attention
over each agent’s own G×G spatial map without any cross-agent computation.
By contrast, Team Relation Encoder completely focuses on capturing team-wise
interactions without leveraging any spatial information. In particular, for each of
the G×G grid, Team Relation Encoder extracts the features w.r.t. that grid from
the N agents and performs a standard transformer over these N features. We
can further stack multiple Spatial-TeamFormer blocks for even richer interaction
representations.

We remark that another possible alternative to Spatial-TeamFormer is to
simply use a big transformer over the aggregated N×G×G features. Such a naive
solution is substantially more expensive to compute (O(N2G4) time complexity)
than Spatial-TeamFormer (O(N2G2 +NG4) time complexity), which may also
incur significant learning difficulty in practice (see Section 5.4).

Action Generator The Action Generator is the final part of MSP, which outputs
a long-term global goal over the reconstructed map. Since spatial-TeamFormer
produces a total of N rich spatial representation, which can be denoted as
N ×G×G , we take the first G×G grid, which is the feature map of the current
agent, to derive a single team-size-invariant representation.

In order to produce accurate global goals, we adopt a spatial action space
with two separate action heads, i.e., a discrete region head for choosing a region
g from the G×G discretized grids, and a continuous point head for outputing a
coordinate (x, y), indicating the relative position of the global goal within the
selected region g. To compute the action probability for g, we compute a spatial
softmax operator over all the grids while to ensure the scale of (x, y) is bounded
between 0 and 1, we apply a sigmoid function before outputting the value of
(x, y). We remark that such a spatial design of action space is beneficial since it
alleviates the problem of multi-modal issue of modeling potential "good" goals,
which could not be simply represented by a simple normal distribution as used
in [9] (see Section 5.4).

4.2 Map Refiner for Aligned 2D Maps
We develop a map refiner to ensure all the maps from the neural SLAM module
are within the same coordinate system. The workflow is shown as the blue and
green part in Fig. 3. The map refiner first composes all the past agent-centric local
maps to recover the agent-centric global map. Then, we transform the coordinate
system based on the pose estimates to normalize the global maps from all the
agents w.r.t. the same coordinate system. Note that when an agent explores the
border of the house, the agent-centric local map often covers a large portion of
invisible region. As a result, the normalized global map will accordingly contain a
large unexplorable boundary surrounding the actual explorable house region. To
ensure the feature extractor in MSP concentrates only on the viable part and also

8 C. Yu et al.

Map

Fusion

Map Merger

Agent-centric

Local Map

Agent-centric

Global Map
Normalized

Global Map

Refined

Global Map

Map Refiner

Coordinate

Transformation

Map

Enlargement

Map

Composition

Refined

Global Map

Merged

Global Map

Agent

Agent

Agent-centric

Local Map

Agent-centric

Global Map

Normalized

Global Map

Map Refiner

Coordinate

Transformation

Map

Enlargement

Map

Composition
…

…

Agent

Fig. 3. Computation workflow of map refiner (blue and green) and map merger (purple).

induce a more focused spatial action space, we crop the unexplorable boundary
of the normalized map and enlarge the house region as our final refined map.

4.3 Map Merger for Improved Local Planning
The local planner from ANS plans sub-goals on the agent-centric local map, while
in our setting, we can also leverage the information from other agents to plan
over a more accurate map. The diagram of map merger is shown in Fig. 3. After
obtaining N enlarged global maps via the map refiner, the map merger simply
integrates all these maps by applying a max-pooling operator for each pixel
location. That is, for each pixel in the merged global map, the probability of it
being an obstacle is the maximum value at that pixel over all individual enlarged
global maps. We remark that the artificial merged global map is only utilized in
the local planner, but not in the global planner MSP. We empirically observe that
having a coarse merged map produces better short-term local goal while such an
artificial map is not sufficient for accurate global planning. (see Section 5.4)

4.4 Policy Distillation for Improved Generalization

The common training paradigm for visual exploration is multi-task learning,
i.e., at each training episode, a random training scene or team size is sampled
and all collected samples are aggregated for policy optimization [6, 9]. However,
we empirically observe that different Habitat scenes and team sizes may lead
to drastically different exploration difficulties. During training, gradients from
different configurations may negatively impact each other. Similar observations
have been also reported in the existing literature [18, 53]. We use policy distillation
to tackle this problem. Therefore, we adopt a two-phase distillation-based solution:
in the first phase, we train separate policies for representative training scenes
with a fixed team size, i.e., we choose N = 2 in our experiments in the second
phase, we learn another policy with N = 2 agents to distill the collection
of pretrained policies over different training scenes and directly measure the
generalization ability of this distillation policy to novel scenes and different team
sizes. More specifically, for the i-th training scene, we first learn a specialized
teacher policy π(g, x, y|s, θi) given state s with parameter θi, where g denotes
the region output and (x, y) is the point head output. Then we train another
distillation policy π(g, x, y|s, θ) by simply running a dagger-style [44] imitation
learning, i.e., randomly rollout trajectories w.r.t. the distillation policy π(s, θ)
and imitate the output from the specific teacher policy. Since the region action g

Learning Efficient Multi-Agent Cooperative Visual Exploration 9

is discrete, we adopt a KL-divergence-based loss function while for the continuous
point action (x, y), a squared difference loss between the teacher policy and
distillation policy is optimized.

5 Experiment Results

5.1 Experiment Setting

We adopt scene data from the Gibson Challenge dataset [63] while the visual
signals and dynamics are simulated by the Habitat simulator [47]. Although
Gibson Challenge dataset provides 72 training and 14 validation scenes, we
discard scenes that are not appropriate for our task, such as scenes that have
large disconnected regions or multiple floors so that the agents are not possible
to achieve 90% coverage of the entire house. Then we categorize the remaining
scenes into 23 training scenes and 10 testing scenes. We consider N = 2, 3, 4
agents in our experiments. Every RL training is performed with 104 training
episodes over 3 random seeds. Each evaluation score is expressed in the format of
“mean (standard deviation)”, which is averaged over a total of 300 testing episodes,
i.e., 100 episodes per random seed. More details are deferred to Appendix E.

5.2 Evaluation Metrics

We take 3 metrics to examine the exploration efficiency:
1. Coverage: Coverage represents the ratio of areas explored by the agents

to the entire explorable space in the indoor scene at the end of the episode.
Higher Coverage implies more effective exploration.

2. Steps: Steps is the number of timesteps used by agents to achieve a coverage
ratio of 90% within an episode. Fewer Steps implies faster exploration.

3. Mutual Overlap: For effective collaboration, each agent should visit regions
different from those explored by its teammates. We report the average
overlapping explored area over each pair of agents when the coverage ratio
reaches 90%. Mutual Overlap denotes the normalized value of this metric.
Lower Mutual Overlap suggests better multi-agent coordination.

5.3 Baselines

We first adapt 3 single-agent planning-based methods, namely Nearest [64],
Utility [26], and RRT [55], to our problems by planning on the merged global
map. The 3 planning-based baselines are frontier-based, i.e., they choose long-term
navigation goals from the boundary between currently explored and unexplored
area using different heuristics: Nearests chooses the nearest candidate point;
Utility measures a hand-crafted utility function; RRT develops a Rapid-exploring
Random Tree and selects the best candidate from the tree through an iterative
process. Note that though these are originally single-agent methods and are
adapted to multi-agent settings by planning on the merged global map. When
choosing global goals, each agent performs computation based on the merged
global map, its current position and its past trajectory.

For multi-agent baselines, we compare MAANS with 3 planning-based meth-
ods, namely Voronoi [19], APF [67] and WMA-RRT [36]. APF [67] computes

10 C. Yu et al.

Fig. 4. Comparison between MAANS (red) and other ANS variants. Both ANS variants
perform consistently worse than MAANS on each map.

artificial potential field over clustered frontiers and plans a potential-descending
path with maximum information gain. APF introduces resistance force among
multiple agents to avoid repetitive exploration. WMA-RRT [36] is a multi-agent
variant of RRT, in which agents cooperatively maintain a single tree and follow a
formal locking-and-search scheme. Voronoi -based method partitions the map into
different parts using a voronoi partition and each agent only searches unexplored
area in its own partition.

Finally, we also evaluate the performance of random policies for references.
We remark that all the baselines only replace the global planner module with
corresponding planning-based methods while utilizing the same neural SLAM,
local planner and local policy modules as MAANS for a fair comparison. More
implementation details can be found in Appendix B.

5.4 Ablation Study

We report the training performances of multiple RL variants on 2 selected scenes,
Colebrook and Dryville, and measure the Steps and the Mutual Overlap over
these 2 scenes.

Comparison with ANS variants We first consider 2 ANS variants, ANS-blind
and ANS-stack, other than MAANS.
– ANS-idv We train N ANS agents to explore individually, i.e., without any

communication, in the environment.
– ANS-stack We directly stack all the agent-centric local maps from the

neural SLAM module as the input representation to the global planner, and
retrain the ANS global planner under our multi-agent task setting.

We demonstrate the training curves in Fig. 4. Regarding the Steps, both ANS
variants perform consistently worse than MAANS on each map. Regarding
the Mutual Overlap, the idv variant fails to cooperate completely while the
stack variant produces comparable Mutual Overlap to MAANS despite its low
exploration efficiency. We remark that ANS-stack performs global and local
planning completely on the agent-centric local map while the local map is
a narrow sub-region over the entire house, which naturally leads to a much
conservative exploration strategy and accordingly helps produces a lower Mutual
Overlap.

Ablation Study on MSP We consider 3 additional MSP variants:
– MSP w.o. TeamFormer: We completely substitute Spatial-TeamFormer

with a simple average pooling layer over the extracted spatial features from
CNN extractors.

Learning Efficient Multi-Agent Cooperative Visual Exploration 11

Fig. 5. Ablation studies on MSP components. The full MSP module produces the lowest
Steps and Mutual Overlap.

– MSP w.o. Act. Gen. We remove the region head from the spatial action
generator, so that the global goal is directly generated over the entire refined
global map via two Gaussian action distributions. We remark that such an
action space design follows the original ANS paper [46].

– MSP-merge We consider another MSP variant that applies a single CNN
feature extractor over the manually merged global map from the map merger,
instead of forcing the network to learn to fuse each agent’s information.

As shown in Fig. 5, the full MSP module produces the lowest Steps and Mutual
Overlap. Among all the MSP variants, MSP w.o. Act. Gen. produces the highest
Steps. This suggests that a simple Gaussian representation of actions may not
be able to fully capture the distribution of good long-term goals, which can be
highly multi-modal in the early exploration stage. In scene Dryville, MSP w.o.
TeamFormer performs much worse and shows larger training unstability than the
full model, showing the importance of jointly leveraging intra-agent and spatial
relationships in a hierarchical manner. In addition, MSP-merge produces a very
high Mutual Overlap in scene Dryville. We hypothesis that this is due to the fact
that many agent-specific information are lost in the manually merged maps while
MSP can learn to utilize these features implicitly.

Ablation Study on Spatial-TeamFormer We consider the following variants
of MAANS by altering the components of Spatial-TeamFormer as follows:

– No Ind. Spatial Enc.: Individual Spatial Encoder is removed from Spatial-
TeamFormer

– No Team Rel. Enc.: Similarly, this variant removes Team Relation Encoder
while only keeps Individual Spatial Encoder.

– Unified: This variant applies a single unified transformer over the spatial
features from all the agents instead of the hierarchical design in Spatial-
TeamFormer. In particular, we directly feed all the N ×G×G features into
a big transformer model to generate an invariant representation.

– Flattened: In this variant, we do not keep the spatial structure of feature
maps. Instead, we first convert the CNN extracted feature into a flatten
vector for each agent and then simply feed these N flattened vectors to a
standard transformer model for feature learning. We remark that this variant
is exactly the same as [58].

We report training curves in Fig. 6. Compared with Spatial-TeamFormer,
No Team Rel. Enc. has the highest Mutual Overlap and worst Steps on both
scenes, which suggests that lacking partners’ relationship attention significantly
lowers the cooperation efficiency. We remark that No Team Rel. Enc. is indeed a

12 C. Yu et al.

Fig. 6. Ablation studies on Spatial-TeamFormer. MAANS produces the lowest Steps
and Mutual Overlap.

single-agent variant of Spatial-TeamFormer: each agent plans global goal using
its individual information while doing path planning still with the merged global
map. The variant using Flattened features is also performing much worse than
the full model with a clear margin, showing that the network architecture without
utilizing spatial inductive bias could hurt final performance. When individual
spatial encoder is removed (No Ind. Spatial Enc.), the sample efficiency drops
greatly in scene Dryville and the method achieves a higher Mutual Overlap than
MAANS. Unified also has worse sample efficiency that the full model. Note
that Unified shows greater performance than Flattened, again confirming the
importance of utilizing spatial inductive bias.

5.5 Main Results

Due to space constraints, we only present a selected portion of the most com-
petitive results in the main paper and defer the full results to Appendix F.

Comparison with Planning-based Baselines and RL baseline
(1) Training with a Fixed Team Size: We first report the performance

of MAANS and selected the baseline methods with a fixed team size of N = 2
agents on both representative training scenes and testing scenes in Table 1. We
remark that only 9 policies of representative training scenes are used to do
policy distillation(PD) since it takes a lot of work to train a separated policy
for each scene. Except for the Mutual Overlap on the testing scenes where
the performance is slightly worse than Voronoi, MAANS still outperforms all
planning-based baselines in Steps and Coverage metrics on training and testing
scenes. More concretely, MAANS reduces 20.56% exploration steps on training
scenes and 7.99% exploration steps on testing scenes than the best planning-based
competitor. We also compare with an RL baseline MAANS w.o. PD, which is
trained by randomly sampling all training scenes instead of policy distillation.
MAANS w.o. PD performs much worse than MAANS on both training and
testing scenes, and slightly worse than the best single-agent planning-based
method RRT and multi-agent planning-based method Voronoi on testing scenes,
indicating the necessity of introducing policy distillation.

We also observe that APF and WMA-RRT, as multi-agent planning baselines,
even perform worse than single-agent methods. We empirically found this is
due to the formally-designed cooperation paradigm they adopt, which imposes
great restriction to agents’ behaviors. In contrast, MAANS, by using MSP, could
perform more complicated cooperative strategy to fully explore the scene. Further
illustration and analysis could be found in Appendix F.3.

Learning Efficient Multi-Agent Cooperative Visual Exploration 13

Sce. Metrics Utility RRT APF WMA-RRT Voronoi MAANS w.o PD MAANS

Train
Mut. Over. ↓ 0.68(0.01) 0.53(0.02) 0.61(0.01) 0.61(0.01) 0.44(0.01) 0.46(0.01) 0.42(0.01)

Steps ↓ 236.15(3.61) 199.59(3.27) 251.41(3.15) 268.20(2.24) 237.04(2.95) 180.25(2.35) 158.55(2.25)

Coverage ↑ 0.92(0.01) 0.96(0.00) 0.90(0.01) 0.87(0.01) 0.93(0.00) 0.96(0.00) 0.97(0.00)

Test
Mut. Over.↓ 0.69(0.01) 0.57(0.01) 0.57(0.01) 0.64(0.01) 0.51(0.01) 0.57(0.01) 0.54(0.02)

Steps ↓ 161.28(2.32) 157.29(2.59) 181.18(4.17) 198.92(3.83) 156.68(3.21) 159.53(2.73) 144.16(2.52)

Coverage ↑ 0.95(0.00) 0.95(0.01) 0.93(0.01) 0.91(0.01) 0.96(0.01) 0.96(0.00) 0.96(0.00)

Table 1. Performance of MAANS and selected planning-based baselines and RL baseline
with a fixed size of N = 2 agents on both training and testing scenes.

(2) Zero-Shot Transfer to Different Team Sizes: In this part, we directly
apply the policies trained with N = 2 agents to the scenes of N = 3, 4 agents
respectively. The zero-shot generalization performance of MAANS compared with
the best single-agent baseline RRT and the best multi-agent baseline Voronoi
on both training and testing scenes is shown in Table 2. Note that experiments
on testing scenes are extremely challenging since MAANS is never trained with
N = 3, 4 team sizes on testing scenes. Although MAANS is only trained on the
team size of 2 on training scenes, MAANS achieves much better performance
than the best planning-based methods with every novel team size on training
scenes (17.56% fewer Steps with N = 3 and 18.36% fewer Steps with N = 4) and
comparable performance on testing scenes (< 3 more Steps with N = 3, 4).

Agent Metrics Training Scenes Testing Scenes

RRT Voronoi MAANS RRT Voronoi MAANS

3
Mut. Over. ↓ 0.44(0.01) 0.37(0.01) 0.42(0.01) 0.45(0.01) 0.43(0.01) 0.53(0.01)

Steps ↓ 155.13(3.26) 180.27(2.51) 127.88(1.91) 128.33(1.66) 119.98(2.31) 122.48(2.22)

Coverage ↑ 0.95(0.01) 0.95(0.00) 0.97(0.00) 0.95(0.01) 0.96(0.00) 0.96(0.00)

4
Mut. Over. ↓ 0.36(0.01) 0.34(0.01) 0.42(0.01) 0.41(0.01) 0.39(0.01) 0.50(0.01)

Steps ↓ 140.57(1.78) 147.01(2.38) 114.75(1.69) 111.30(1.58) 101.90(2.36) 109.07(2.02)

Coverage ↑ 0.92(0.01) 0.93(0.00) 0.96(0.00) 0.93(0.01) 0.95(0.00) 0.94(0.00)

2 ⇒ 3
Mut. Over.↓ 0.36(0.01) 0.35(0.01) 0.30(0.01) 0.43(0.01) 0.32(0.02) 0.46(0.01)

Steps↓ 185.94(1.83) 200.91(2.32) 148.82(2.01) 136.42(2.41) 148.12(6.69) 134.11(2.88)

Coverage↑ 0.94(0.00) 0.92(0.00) 0.96(0.00) 0.96(0.01) 0.92(0.05) 0.96(0.00)

3 ⇒ 2
Mut. Over.↓ 0.35(0.01) 0.33(0.01) 0.41(0.01) 0.39(0.01) 0.42(0.01) 0.43(0.01)

Steps↓ 187.93(1.98) 206.94(2.50) 145.14(2.83) 139.52(3.74) 133.77(2.83) 145.43(3.44)

Coverage↑ 0.91(0.00) 0.89(0.01) 0.95(0.00) 0.94(0.01) 0.95(0.01) 0.94(0.01)

Table 2. Generalization performance of MAANS and selected planning-based methods
to novel fixed and varying team sizes on training and testing scenes. Note that MAANS
has the best performance on training scenes and comparable results on testing scenes.

(3) Varying Team Size within an Episode We further consider the
setting where the team size varies within an episode. We summarize the zero-shot
generalization performance of MAANS compared with two selected planning-
based methods RRT and Voronoi in Table 2. We use "N1 ⇒ N2" to denote that
each episode starts with N1 agents and the team size immediately switches to N2

after 90 timesteps. Note that MAANS is trained on the training scenes with fixed
team size, the varying team size setting is a zero-shot generalization challenge for
MAANS. In cases where the team size increases, MAANS produces substantially
better performances w.r.t. every metric. In particular, MAANS achieves 33 fewer
Steps in training scenes and lower Steps than other methods in testing scenes,

14 C. Yu et al.

which suggests that MAANS has the capability to adaptively adjust its strategy.
Regarding the cases where the team size decreases, MAANS consumes over 40
fewer Steps in 3 ⇒ 2 than RRT in training scenes.

We remark that decreasing the team size is particularly challenging since
the absence of some agents might immediately leave a large part of the house
unexplored and consequently, the team should immediately update their original
plan with drastically different goal assignments.

5.6 Learned Strategy

Fig. 7 demonstrates two 2-agent trials of MAANS and RRT, the most competitive
planning-based method, with the same birth place. The merged global map are
shown in keep timesteps. As shown in Fig 7, MAANS’s coverage ratio goes up
faster than RRT, indicating higher exploration efficiency. At timestep around
90, MAANS produces global goals successfully allocate the agents towards two
distant unexplored area while RRT guides the agents towards the same part of
the map. And at timestep around 170 when MAANS reaches 90% coverage ratio,
RRT still stuck in previous explored area though there is obviously another large
open space. Notice that at this key timestep RRT selects two frontiers that are
marked unexplored but with no actual benefit, which an agent utilizing prior
knowledge about room structures would certainly avoid.

Fig. 7. Learned strategy on scene Colebrook of MAANS vs. RRT, where the red line
with arrow represents the trajectory, the explored area shows in blue and the obstacle
shows in green. MAANS achieves much higher and faster coverage ratio than RRT
throughout the episode.

6 Conclusion
We propose the first multi-agent cooperative exploration framework, Multi-Agent
Active Neural SLAM (MAANS) that outperforms planning-based competitors
in a photo-realist physical environment. The key component of MAANS is the
RL-based planning module, Multi-agent Spatial Planner (MSP), which leverages
a transformer-based architecture, Spatial-TeamFormer, to capture team-size-
invariant representation with strong spatial structures. We also implement a
collection of multi-agent-specific enhancements and policy distillation for bet-
ter generalization. Experiments on Habitat show that MAANS achieves better
training and testing performances than all the baselines. We hope MAANS can
inspire more powerful multi-agent methods in the future.

Learning Efficient Multi-Agent Cooperative Visual Exploration 15

References

1. Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., Ogale, A.,
Vincent, L., Weaver, J.: Google street view: Capturing the world at street level.
Computer 43(6), 32–38 (2010)

2. Bhatti, S., Desmaison, A., Miksik, O., Nardelli, N., Siddharth, N., Torr, P.H.:
Playing doom with slam-augmented deep reinforcement learning. arXiv preprint
arXiv:1612.00380 (2016)

3. Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping:
A survey of current trends in autonomous driving. IEEE Transactions on Intelligent
Vehicles 2(3), 194–220 (2017)

4. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot
exploration. IEEE Transactions on robotics 21(3), 376–386 (2005)

5. Čáp, M., Novák, P., Vokřínek, J., Pěchouček, M.: Multi-agent rrt*: Sampling-based
cooperative pathfinding. arXiv preprint arXiv:1302.2828 (2013)

6. Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning
to explore using active neural slam. In: International Conference on Learning
Representations. ICLR (2020)

7. Chaplot, D.S., Gandhi, D.P., Gupta, A., Salakhutdinov, R.R.: Object goal navigation
using goal-oriented semantic exploration. Advances in Neural Information Processing
Systems 33 (2020)

8. Chaplot, D.S., Salakhutdinov, R., Gupta, A., Gupta, S.: Neural topological slam
for visual navigation. In: CVPR (2020)

9. Chen, T., Gupta, S., Gupta, A.: Learning exploration policies for navigation. In:
International Conference on Learning Representations. ICLR (2019)

10. Chu, X., Ye, H.: Parameter sharing deep deterministic policy gradient for cooperative
multi-agent reinforcement learning. CoRR abs/1710.00336 (2017)

11. Cohen, W.W.: Adaptive mapping and navigation by teams of simple robots. Robotics
and autonomous systems 18(4), 411–434 (1996)

12. Desaraju, V.R., How, J.P.: Decentralized path planning for multi-agent teams
in complex environments using rapidly-exploring random trees. In: 2011 IEEE
International Conference on Robotics and Automation. pp. 4956–4961. IEEE (2011)

13. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020)

14. Duan, Y., Andrychowicz, M., Stadie, B.C., Ho, J., Schneider, J., Sutskever, I.,
Abbeel, P., Zaremba, W.: One-shot imitation learning. In: NIPS (2017)

15. Foerster, J.N., Assael, Y.M., De Freitas, N., Whiteson, S.: Learning to communicate
with deep multi-agent reinforcement learning. arXiv preprint arXiv:1605.06676
(2016)

16. Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M.: Visual simultaneous
localization and mapping: a survey. Artificial intelligence review 43(1), 55–81 (2015)

17. Henriques, J.F., Vedaldi, A.: Mapnet: An allocentric spatial memory for mapping
environments. In: proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 8476–8484 (2018)

18. Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., van Hasselt, H.:
Multi-task deep reinforcement learning with popart. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 33, pp. 3796–3803 (2019)

16 C. Yu et al.

19. Hu, J., Niu, H., Carrasco, J., Lennox, B., Arvin, F.: Voronoi-based multi-robot
autonomous exploration in unknown environments via deep reinforcement learning.
IEEE Transactions on Vehicular Technology 69(12), 14413–14423 (2020)

20. Iqbal, S., Sha, F.: Actor-attention-critic for multi-agent reinforcement learning. In:
International Conference on Machine Learning. pp. 2961–2970. PMLR (2019)

21. Iqbal, S., Sha, F.: Coordinated exploration via intrinsic rewards for multi-agent
reinforcement learning. arXiv preprint arXiv:1905.12127 (2019)

22. Isler, S., Sabzevari, R., Delmerico, J., Scaramuzza, D.: An information gain formula-
tion for active volumetric 3d reconstruction. In: 2016 IEEE International Conference
on Robotics and Automation (ICRA). pp. 3477–3484. IEEE (2016)

23. Jain, U., Weihs, L., Kolve, E., Rastegari, M., Lazebnik, S., Farhadi, A., Schwing,
A.G., Kembhavi, A.: Two body problem: Collaborative visual task completion.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 6689–6699 (2019)

24. Jiang, J., Dun, C., Huang, T., Lu, Z.: Graph convolutional reinforcement learning.
arXiv preprint arXiv:1810.09202 (2018)

25. Jiang, J., Lu, Z.: Learning attentional communication for multi-agent cooperation.
Advances in Neural Information Processing Systems 31, 7254–7264 (2018)

26. Juliá, M., Gil, A., Reinoso, O.: A comparison of path planning strategies for
autonomous exploration and mapping of unknown environments. Autonomous
Robots 33(4), 427–444 (2012)

27. Kleiner, A., Prediger, J., Nebel, B.: Rfid technology-based exploration and slam
for search and rescue. In: 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems. pp. 4054–4059. IEEE (2006)

28. Li, A.Q.: Exploration and mapping with groups of robots: Recent trends. Current
Robotics Reports pp. 1–11 (2020)

29. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 (2015)

30. Liu, I.J., Jain, U., Yeh, R.A., Schwing, A.: Cooperative exploration for multi-agent
deep reinforcement learning. In: International Conference on Machine Learning. pp.
6826–6836. PMLR (2021)

31. Liu, X., Guo, D., Liu, H., Sun, F.: Multi-agent embodied visual semantic navigation
with scene prior knowledge. arXiv preprint arXiv:2109.09531 (2021)

32. Long, Q., Zhou, Z., Gupta, A., Fang, F., Wu, Y., Wang, X.: Evolutionary popula-
tion curriculum for scaling multi-agent reinforcement learning. In: International
Conference on Learning Representations (2020)

33. Malysheva, A., Sung, T.T., Sohn, C.B., Kudenko, D., Shpilman, A.: Deep multi-
agent reinforcement learning with relevance graphs. arXiv preprint arXiv:1811.12557
(2018)

34. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

35. Mousavian, A., Toshev, A., Fišer, M., Košecká, J., Wahid, A., Davidson, J.: Vi-
sual representations for semantic target driven navigation. In: 2019 International
Conference on Robotics and Automation (ICRA). pp. 8846–8852. IEEE (2019)

36. Nazif, A.N., Davoodi, A., Pasquier, P.: Multi-agent area coverage using a single query
roadmap: A swarm intelligence approach. In: Advances in practical multi-agent
systems, pp. 95–112. Springer (2010)

37. Nguyen, T.T., Nguyen, N.D., Nahavandi, S.: Deep reinforcement learning for
multiagent systems: A review of challenges, solutions, and applications. IEEE
transactions on cybernetics 50(9), 3826–3839 (2020)

Learning Efficient Multi-Agent Cooperative Visual Exploration 17

38. Parisotto, E., Salakhutdinov, R.: Neural map: Structured memory for deep reinforce-
ment learning. In: International Conference on Learning Representations. ICLR
(2018)

39. Patel, S., Hariharan, S., Dhulipala, P., Lin, M.C., Manocha, D., Xu, H., Otte, M.:
Multi-agent ergodic coverage in urban environments

40. Peng, P., Yuan, Q., Wen, Y., Yang, Y., Tang, Z., Long, H., Wang, J.: Multiagent
bidirectionally-coordinated nets for learning to play starcraft combat games. CoRR
abs/1703.10069 (2017), http://arxiv.org/abs/1703.10069

41. Ramakrishnan, S.K., Al-Halah, Z., Grauman, K.: Occupancy anticipation for effi-
cient exploration and navigation. In: European Conference on Computer Vision.
pp. 400–418. Springer (2020)

42. Ramakrishnan, S.K., Jayaraman, D., Grauman, K.: An exploration of embodied
visual exploration. International Journal of Computer Vision 129(5), 1616–1649
(2021)

43. Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., Whiteson, S.:
Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In: International Conference on Machine Learning. pp. 4295–4304. PMLR
(2018)

44. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In: Proceedings of the fourteenth
international conference on artificial intelligence and statistics. pp. 627–635. JMLR
Workshop and Conference Proceedings (2011)

45. Ryu, H., Shin, H., Park, J.: Multi-agent actor-critic with hierarchical graph attention
network. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34,
pp. 7236–7243 (2020)

46. Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Pollefeys, M., Lillicrap, T.,
Gelly, S.: Episodic curiosity through reachability. In: International Conference on
Learning Representations. ICLR (2019)

47. Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub, J.,
Liu, J., Koltun, V., Malik, J., et al.: Habitat: A platform for embodied ai research.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 9339–9347 (2019)

48. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

49. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences 93(4), 1591–1595 (1996)

50. Sukhbaatar, S., Fergus, R., et al.: Learning multiagent communication with back-
propagation. Advances in neural information processing systems 29, 2244–2252
(2016)

51. Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V., Jaderberg,
M., Lanctot, M., Sonnerat, N., Leibo, J.Z., Tuyls, K., et al.: Value-decomposition
networks for cooperative multi-agent learning based on team reward. In: Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent
Systems. pp. 2085–2087 (2018)

52. Tagliabue, A., Schneider, S., Pavone, M., Agha-mohammadi, A.: Shapeshifter:
A multi-agent, multi-modal robotic platform for exploration of titan. CoRR
abs/2002.00515 (2020)

53. Teh, Y.W., Bapst, V., Czarnecki, W.M., Quan, J., Kirkpatrick, J., Hadsell, R.,
Heess, N., Pascanu, R.: Distral: Robust multitask reinforcement learning. In: NIPS
(2017)

18 C. Yu et al.

54. Terry, J.K., Grammel, N., Hari, A., Santos, L., Black, B., Manocha, D.: Parameter
sharing is surprisingly useful for multi-agent deep reinforcement learning. CoRR
abs/2005.13625 (2020)

55. Umari, H., Mukhopadhyay, S.: Autonomous robotic exploration based on mul-
tiple rapidly-exploring randomized trees. In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp. 1396–1402 (2017).
https://doi.org/10.1109/IROS.2017.8202319

56. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017)

57. Wakilpoor, C., Martin, P.J., Rebhuhn, C., Vu, A.: Heterogeneous multi-agent
reinforcement learning for unknown environment mapping. arXiv preprint
arXiv:2010.02663 (2020)

58. Wang, H., Wang, W., Zhu, X., Dai, J., Wang, L.: Collaborative visual navigation.
arXiv preprint arXiv:2107.01151 (2021)

59. Wang*, T., Wang*, J., Wu, Y., Zhang, C.: Influence-based multi-agent exploration.
In: International Conference on Learning Representations (2020)

60. Wang, W., Yang, T., Liu, Y., Hao, J., Hao, X., Hu, Y., Chen, Y., Fan, C., Gao,
Y.: From few to more: Large-scale dynamic multiagent curriculum learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 7293–7300
(2020)

61. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
7794–7803 (2018)

62. Wurm, K.M., Stachniss, C., Burgard, W.: Coordinated multi-robot exploration using
a segmentation of the environment. In: 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems. pp. 1160–1165. IEEE (2008)

63. Xia, F., Zamir, A.R., He, Z., Sax, A., Malik, J., Savarese, S.: Gibson env: Real-
world perception for embodied agents. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 9068–9079 (2018)

64. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Pro-
ceedings 1997 IEEE International Symposium on Computational Intelligence in
Robotics and Automation CIRA’97.’Towards New Computational Principles for
Robotics and Automation’. pp. 146–151. IEEE (1997)

65. Yang, W., Wang, X., Farhadi, A., Gupta, A., Mottaghi, R.: Visual semantic
navigation using scene priors. arXiv preprint arXiv:1810.06543 (2018)

66. Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., Wu, Y.: The surprising effective-
ness of mappo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955
(2021)

67. Yu, J., Tong, J., Xu, Y., Xu, Z., Dong, H., Yang, T., Wang, Y.: Smmr-explore:
Submap-based multi-robot exploration system with multi-robot multi-target poten-
tial field exploration method. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA) (2021)

68. Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I., Tuyls,
K., Reichert, D., Lillicrap, T., Lockhart, E., et al.: Relational deep reinforcement
learning. arXiv preprint arXiv:1806.01830 (2018)

69. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph
neural network. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. pp. 793–803 (2019)

Learning Efficient Multi-Agent Cooperative Visual Exploration 19

70. Zhang, Y., Hare, J., Prugel-Bennett, A.: Deep set prediction networks. Advances in
Neural Information Processing Systems 32, 3212–3222 (2019)

71. Zhu, F., Hu, S., Zhang, Y., Hong, H., Zhu, Y., Chang, X., Liang, X.: Main: A
multi-agent indoor navigation benchmark for cooperative learning (2021)

