
Asynchronous Multi-Agent Reinforcement Learning for
Efficient Real-Time Multi-Robot Cooperative Exploration

Chao Yu
Tsinghua University

Beijing, China
zoeyuchao@gmail.com

Xinyi Yang
Tsinghua University

Beijing, China
yang-xy20@mails.tsinghua.edu.cn

Jiaxuan Gao
Tsinghua University

Beijing, China
gaojx19@mails.tsinghua.edu.cn

Jiayu Chen
Tsinghua University

Beijing, China

Yunfei Li
Tsinghua University

Beijing, China

Jijia Liu
Tongji University
Shanghai, China

Yunfei Xiang
Tsinghua University

Beijing, China

Ruixin Huang
Tsinghua University

Beijing, China

Huazhong Yang
Tsinghua University

Beijing, China

Yi Wu
Tsinghua University

Shanghai Qi Zhi Institute, China
jxwuyi@gmail.com

Yu Wang
Tsinghua University

Beijing, China
yu-wang@tsinghua.edu.cn

ABSTRACT
We consider the problem of cooperative exploration where mul-
tiple robots need to cooperatively explore an unknown region as
fast as possible. Multi-agent reinforcement learning (MARL) has
recently become a trending paradigm for solving this challenge.
However, existing MARL-based methods adopt action-making steps
as the metric for exploration efficiency by assuming all the agents
are acting in a fully synchronous manner: i.e., every single agent
produces an action simultaneously and every single action is exe-
cuted instantaneously at each time step. Despite its mathematical
simplicity, such a synchronous MARL formulation can be prob-
lematic for real-world robotic applications. It can be typical that
different robots may take slightly different wall-clock times to ac-
complish an atomic action or even periodically get lost due to
hardware issues. Simply waiting for every robot being ready for
the next action can be particularly time-inefficient. Therefore, we
propose an asynchronous MARL solution, Asynchronous Coordi-
nation Explorer (ACE), to tackle this real-world challenge. We first
extend a classical MARL algorithm, multi-agent PPO (MAPPO),
to the asynchronous setting and additionally apply action-delay
randomization to enforce the learned policy to generalize better to
varying action delays in the real world. Moreover, each navigation
agent is represented as a team-size-invariant CNN-based policy,
which greatly benefits real-robot deployment by handling possible
robot lost and allows bandwidth-efficient intra-agent communica-
tion through low-dimensional CNN features. We first validate our
approach in a grid-based scenario. Both simulation and real-robot
results show that ACE reduces over 10% actual exploration time
compared with classical approaches. We also apply our framework

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

to a high-fidelity visual-based environment, Habitat, achieving 28%
improvement in exploration efficiency.

KEYWORDS
Multi-Agent Reinforcement Learning; Asynchronous DecisionMak-
ing; Cooperative Exploration

ACM Reference Format:
Chao Yu, Xinyi Yang, Jiaxuan Gao, Jiayu Chen, Yunfei Li, Jijia Liu, Yunfei
Xiang, Ruixin Huang, Huazhong Yang, YiWu, and YuWang. 2023. Asynchro-
nous Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-
Robot Cooperative Exploration. In Proc. of the 22nd International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2023), London,
United Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Exploration is a fundamental task for building intelligent robot
systems, which has been applied in many application domains, in-
cluding rescue [12], autonomous driving [1], drone [27], and mobile
robots [18]. In this paper, we consider a multi-robot cooperative
exploration task, where multiple homogeneous robots simultane-
ously explore an unknown spatial region in a cooperative fashion.
Learning the optimal cooperative strategies can be challenging
due to the existence of multiple robots. These robots must effec-
tively distribute the exploration workload so that they can always
navigate towards different spatial regions to avoid trajectory con-
flicts, which accordingly leads to a remarkably higher exploration
efficiency than the single-robot setting.

Multi-agent reinforcement learning (MARL) has been a trending
approach to tackle this cooperative exploration challenge. RL-based
methods directly learn neural policies end to end by interacting
with a simulated environment for policy improvement. Compared
with planning-based solutions [2, 19, 24] which require non-trivial
implementation heuristics and expensive inference computation at



execution time, RL-based methods [5, 19] provide strong represen-
tation capabilities of complex strategies and negligible inference
overhead once the policies are trained.

Classical multi-agent RL algorithms typically adopt a synchro-
nous algorithmic framework, i.e., all the agents are making actions
at the same time, and all the actions will be executed immediately at
each time step, leading to the next action-making step for future ac-
tions. This process is mathematically formulated as a decentralized
Markov decision process, which is widely adopted inmulti-agent RL
literature. Although such a mathematical framework is simple and
elegant, it can be problematic for real-world multi-robot exploration
tasks. For real robot systems, each actual action is never atomic
and may take varying times to finish. These action delays can be
more severe due to unexpected network communication traffic or
hardware failure. Simply following the synchronous setting, i.e.,
waiting until every robot is ready before making new actions, can
be particularly real-time inefficient. Therefore, an ideal RL frame-
work for real-world use should be asynchronous, i.e., whenever an
agent finishes action execution, it should immediately generate the
next action, and the learned strategy should effectively enable such
an asynchronous action-making process.

In this paper, we propose a novel asynchronous multi-agent
RL-based solution, Asynchronous Coordination Explorer (ACE), to
tackle the real-world multi-robot exploration task. We first extend a
classical MARL algorithm, multi-agent PPO (MAPPO), to the asyn-
chronous setting to effectively train the multi-agent exploration
policy, and additionally leverage an action-delay randomization
technique to enable better simulation to real-world generalization.
Moreover, we design a communication-efficient Multi-tower-CNN-
based Policy (MCP) for each agent. In MCP, a CNN module is
applied to each agent’s local information to extract features, and
a fusion module combines each agent’s features to produce an ac-
tion. During execution time, efficient intra-agent communication
can be achieved via directly exchanging low-dimensional features
extracted by the weight-sharing CNN module. Another benefit of
MCP is to tackle varying team sizes, which may occur when agents
go offline in real-world applications.

We conduct experiments in a grid-based multi-room scenario
both in simulation and our real-world multi-robot laboratory, where
strategies learned by ACE significantly outperform both classical
planning-based methods and neural policies trained by synchro-
nous RL methods. In particular, ACE reduces 10.07% real-world
exploration time than the synchronous RL baseline and reduces
33.86% real-world exploration time than the fastest planning-based
method with 2 Mecanum steering robots. Besides, we extend ACE
to a vision-based environment, Habitat, verifying the effectiveness
of the asynchronous training mechanism when applied to more
complicated environments. More demonstrations can be seen on
our website: https://sites.google.com/view/ace-aamas.

2 RELATEDWORK
2.1 Cooperative Exploration
Multi-agent cooperative exploration is an important task for build-
ing intelligent mobile robot systems. There are a large number of
works developing planning-based methods for this problem [8, 24,
34], but they typically rely onmanually designed heuristics [2, 7, 31]

and are limited in expressiveness to learn more complex cooper-
ation strategies. Another popular line of research is deep MARL-
based methods which leverage the expressiveness power of neural
networks to learn non-trivial cooperative exploration skills [13, 28–
30, 35, 41]. Note that most existing MARL-based methods assume
synchronous action execution among all the agents or consider
atomic actions, which we believe is due to the synchronous design
of most simulated RL environments. However, such synchronous
design does not reflect the real-world multi-agent systems, where
agents take actions at different real times due to network delay
and unexpected hardware take-downs. We propose an asynchro-
nous MARL exploration framework in this work to better match
real-world applications. [15] considers an asynchronous decision-
making mechanism for large-scale problems and proposes an im-
proved Monte Carlo Search method to solve this problem. A concur-
rent work formulates a set of asynchronous multi-agent actor-critic
methods that allow agents to directly optimize asynchronous poli-
cies [33], while we design an asynchronous MARL training frame-
work combined with action-delay randomization. We also notice a
recent trend of developing asynchronous simulation [10, 36], which
we hope can further accelerate the advances in applying MARL
methods to the real world.
2.2 Sim2real Transfer
It is often challenging to directly deploy policies trained in simu-
lation to the real world since there is always a mismatch between
simulation and reality. Domain randomization is a simple but ef-
fective technique to fill the reality gap, which creates a variety of
simulated environments with randomized properties such as physi-
cal dynamics [17, 21] and visual appearances [16, 22], and tries to
train RL that can perform well among all of them. We also adopt the
idea of domain randomization, and randomly delay the execution
of each agent in simulation to model the uncertain delay between
policy computation and actual action execution in the real world.
The action delay technique is also adopted in other domains such
as model-based RL [4] and reactive RL [23].

3 PRELIMINARY
3.1 Task Setup
We study the task of real-time multi-robot cooperative exploration,
where a team of robots aims to explore an unknown environment ex-
haustively as fast as possible. The real-time multi-robot task is with
an asynchronous nature, i.e., different robots do not take actions
and receive the next-step observations at the same time. A real robot
often requires non-fixed time to execute an action, and unexpected
hardware failure can cause random delays. Besides, under the stan-
dard bi-level control setting in robot navigation [11, 24, 34, 40],
each action is a goal position to reach and typically requires vary-
ing number of atomic steps to accomplish, thus exacerbating the
asynchronous issue. The asynchronous execution is not considered
by classical multi-agent reinforcement learning (MARL) works. It is
typically assumed all agents take actions at the same action-making
step and do not take the action execution time into account. In the
traditional MARL literature [38], the task is usually formulated as
a decentralized partially observable Markov decision process (Dec-
POMDP), which is unable to capture the asynchronous property in
our setting.

https://sites.google.com/view/ace-aamas


3.2 Problem Formulation
We model the asynchronous multi-agent cooperative exploration
task as a decentralized partially observable Semi-Markov decision
process (Dec-POSMDP) [15] with shared rewards.We adopt a modu-
lar action execution scheme [3, 14] which consists of bi-level actions
for robust deployment in real-world robot systems. A macro action
(MA), i.e., global goal, is generated in the action-making step. Sev-
eral atomic actions, i.e., execution actions, are followed to perform
under the guidance of the MA.

To avoid notation ambiguity, we use 𝑝 (𝑖 ) to denote a parameter
𝑝 related to the i-th agent, and 𝑝 = (𝑝 (1) , 𝑝 (2) , · · · , 𝑝 (𝑛) ) to denote
joint parameters for multiple agents thereafter. A Dec-POSMDP is
defined by a set of elements ⟨𝐷,𝑈 , 𝐵, 𝑃, 𝑅𝜏 ⟩.𝐷 = ⟨𝑆,𝐴, Ω̄,𝑂, 𝑅, 𝑃, 𝑛,𝛾⟩
defines the decentralized partially observable Markov decision pro-
cesses (Dec-POMDP), where 𝑆 is the joint state space, 𝐴 is joint
atomic action space, Ω̄ is the observation space,𝑂 (𝑖 ) (𝑜 (𝑖 ) |𝑠, 𝑎 (𝑖 ) ) de-
notes the observation probability function for agent 𝑖 ,𝑅 : 𝑆×𝐴→ R

is the joint reward function, 𝑛 is the number of agents, 𝑃 is the state
transition probability.𝑈 is joint macro-action space. A macro action
𝑢 (𝑖 ) is a high-level policy that can generate a sequence of atomic
actions 𝑎𝑡 ∼ 𝑢 (𝑖 ) (𝐻 (𝑖 )𝑡 ) for any 𝑡 when𝑢 (𝑖 ) is activated, where𝐻

(𝑖 )
𝑡

is the individual action-observation history till 𝑡 . 𝐵 denotes the stop
condition of MA and 𝐵 (𝑖 ) (𝑢 (𝑖 ) ) is represented as a set of action-
observation histories of an agent 𝑖 . If 𝐻 (𝑖 )𝑡 ∈ 𝐵 (𝑖 ) (𝑢 (𝑖 )𝑡 ) holds, 𝑢

(𝑖 )
𝑡

terminates and the agent generates a new MA. 𝑅𝜏 is the macro
joint reward function: 𝑅𝜏 (𝑠,𝑢) = E

[∑𝜏𝑒𝑛𝑑
𝑡=0 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝑎𝑡 ∼ 𝑢 (𝐻𝑡 )

]
where 𝜏𝑒𝑛𝑑 = min𝑡 {𝑡 : 𝐻 (𝑖 )𝑡 ∈ 𝐵 (𝑖 ) (𝑢 (𝑖 ) )}.

The solution of a Dec-POSMDP is a joint high-level decentral-
ized policy 𝜙 = (𝜙 (1) , · · · , 𝜙 (𝑛) ) where each 𝜙 (𝑖 ) produces an
MA 𝜙 (𝑖 ) (𝐻 (𝑖 )𝑡 ) ∈ 𝑈 (𝑖 ) given individual action-observation history
𝐻
(𝑖 )
𝑡 . In the beginning of an episode, an initial MA is computed

as: 𝑢 (𝑖 )𝑡0
= 𝜙 (𝑖 ) (𝐻 (𝑖 )𝑡0

). At action-making step 𝑘 > 0, the agent gen-

erates a new MA 𝑢
(𝑖 )
𝑡𝑘

= 𝜙 (𝑖 ) (𝐻 (𝑖 )𝑡𝑘
) if the stop condition is met,

i.e. 𝐻 (𝑖 )𝑡𝑘
∈ 𝐵 (𝑖 ) (𝑢 (𝑖 )𝑡𝑘−1

). Otherwise, the agent continues to use the

previous MA: 𝑢 (𝑖 )𝑡𝑘
= 𝑢
(𝑖 )
𝑡𝑘−1

. In the time range [𝑡𝑘 , 𝑡𝑘+1), the agent in-
teracts with the environment with atomic actions sampled fromMA:
𝑎
(𝑖 )
𝑡 ∼ 𝑢 (𝑖 ) (𝐻 (𝑖 )𝑡 ). Finally, the goal of Dec-POSMDP is to maximize
the accumulative discounted reward: E

[∑∞
𝑘=0 𝛾

𝑡𝑘𝑅𝜏 (𝑠𝑡𝑘 , 𝑢𝑡𝑘 ) |𝜙, 𝑠0
]

where 𝑡0 = 0 and 𝑡𝑘 = min𝑡 {𝑡 > 𝑡𝑘−1 : 𝐻 (𝑖 )𝑡 ∈ 𝐵 (𝑖 ) (𝑢 (𝑖 )𝑡𝑘−1
)} for

𝑘 ≥ 1. A more detailed definition can be found in [15].
In our asynchronous setting, 𝑡 is the real time, not the discrete

time step as in common synchronous RL. Our setting is more time-
efficient and robust to hardware faults. Take a 2-agent case as an
example (see Fig. 1), in the synchronous setting, the agents can only
transmit data (blue and green arrows) and perform policy inference
(orange arrow) after both of them have finished the previous action
execution. The system execution speed is bottle-necked by the agent
with the longest execution time. Worse still, the whole system will
get stuck if one agent goes offline unexpectedly. By contrast, agents
take actions in a distributed manner in an asynchronous setting.
Each agent can request data from other agents and conduct policy
inference immediately after it finishes its own action execution.

This asynchronous setting is more time-efficient for multi-agent
exploration tasks, and will not be blocked by dynamic changes such
as agents going offline.

3.3 Connection to Conventional MARL
In the conventional MARL literature [38], the problem formulation
is typically under decentralized partially observable Markov deci-
sion process (Dec-POMDP), which assumes synchronized actions.
In this work, we also focus on the multi-agent setting and assume
a shared reward function and dynamic transitions. However, dif-
ferent from synchronous MARL which assumes all agents execute
actions simultaneously, we consider the asynchronous nature in
the practical multi-robot scenarios.

We will adapt a popular MARL algorithm, Multi-Agent Proximal
Policy Optimization (MAPPO) [38], from the conventional setting
to our asynchronous setting. Conventional MAPPO follows the
Centralized Training and Decentralized Execution (CTDE) para-
digm, in which agents make decisions with individual observations
and update the joint policy with global information in a centralized
manner. Under the framework of Dec-POMDP, MAPPO requires
all agents taking actions synchronously at each discrete time step,
and the state transits according to actions from all agents: 𝑠𝑡 ∼
𝑃 (·|𝑠𝑡−1, 𝑎𝑡−1). It aims to find a joint policy 𝜋 that maximizes the ac-
cumulated discounted rewardE

[∑∞
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝑎 (𝑖 )𝑡 ∼ 𝜋 (𝑖 ) (𝐻 (𝑖 )𝑡 )
]
.

Different from MAPPO, Async-MAPPO is designed for the asyn-
chronous setting, where there are no centralized environment steps.

4 METHODOLOGY
To better model the asynchronous nature of real-world multi-agent
exploration problems, we present Asynchronous Coordination Ex-
plorer (ACE). ACE consists of 3 major components: (1) Async-
MAPPO for MARL training, (2) action-delay randomization for
zero-shot generalization in the real world, and (3) multi-tower-
CNN-based policy representation for efficient communication.

4.1 Async-MAPPO
We extend an on-policy MARL algorithm MAPPO [37] to our asyn-
chronous setting, which we call Async-MAPPO. The pseudo-code
of Async-MAPPO is shown in Algo. 1. Compared with the setting
of MAPPO, both policy execution and data collection are not nec-
essarily time-aligned among different agents, and we implement
the asynchronous action-making and replay buffer as follows.
• We design a bi-level execution scheme. In ACE, agents perform
atomic actions under the guidance of global goals (macro ac-
tions). Instead of receiving the reward, local observation, and
states immediately after executing an atomic action, Async-
MAPPO accumulates the reward between action-making steps
and only takes observation and states at each macro action.
• We implement asynchronous buffer insertion, in contrast to
the synchronous scheme in original MAPPO as shown in Fig. 1.
The original MAPPO assumes synchronous execution of all the
agents; in each time step, all the agents take actions simultane-
ously, and the trainer waits for all the new transitions before
inserting them into a centralized data buffer for RL training.
In Async-MAPPO, different agents may not take actions at the
same time (some agents may even get stuck and cannot re-
turn new observations at all), which makes it infeasible for the



Figure 1: Comparison of asynchronous and synchronous action making.

Algorithm 1: Async-MAPPO
1 Initialize the policy 𝜋 ;
2 while 𝑠𝑡𝑒𝑝 ≤ 𝑠𝑡𝑒𝑝𝑚𝑎𝑥 do
3 set data buffer 𝐷 = {};
4 for 𝑖 = 1 to 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 do
5 Reset the environment;
6 Create 𝑁 empty caches 𝐶 = [[], . . . , []];
7 for 𝑡 = 1 to 𝑇 do
8 for all agents 𝑖 = 1 to 𝑁 do
9 if agent 𝑖 replans macro action then
10 𝑏 ← agent 𝑖’s 𝑏-th macro actions;
11 𝑠

(𝑖 )
𝑏
← 𝑆𝑡𝑎𝑡𝑒, 𝑜

(𝑖 )
𝑏
← 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛;

12 𝐶𝑖+ = [𝑠 (𝑖 )𝑏−1, 𝑜
(𝑖 )
𝑏−1, 𝑢

(𝑖 )
𝑏−1, 𝑅

𝜏 (𝑖 )
𝑏

, 𝑠
(𝑖 )
𝑏

, 𝑜
(𝑖 )
𝑏
];

13 𝑝
(𝑖 )
𝑏

= 𝜋 (𝑜 (𝑖 )
𝑏
);

14 Update macro action 𝑢 (𝑖 )
𝑏
∼ 𝑝
(𝑖 )
𝑏

;

15 Execute atomic action 𝑎
(𝑖 )
𝑡 ∼ 𝑢 (𝑖 )

𝑏
;

16 Compute reward-to-go and insert data into 𝐷 ;
17 Update 𝜋 on MAPPO loss;

trainer to collect transitions in the original synchronous man-
ner. Therefore, we allow each agent to store its own transition
data in a separate cache and periodically push the cached data
to the centralized data buffer. We can then run the standard
MAPPO training algorithm over this buffer.

4.2 Action-Delay Randomization
When training in traditional simulators, agents can always take exe-
cution steps synchronously without considering different action ex-
ecution costs. Moreover, real-world action delays such as hardware
failure and network blocking are not simulated. These problems
cause a large gap for deploying trained agents from simulation to
reality. To reduce this gap, we apply action-delay randomization
during simulation. In the end of each action-making step, we force
each agent to wait for a random period from 3 to 5 execution steps

in grid-based environments, and from 10 to 15 execution steps in
Habitat before querying the next macro action.

4.3 Multi-Tower-CNN-Based Policy
The Multi-tower-CNN-based Policy (MCP) is utilized to generate
macro actions, i.e., global goals in ACE. As illustrated in Fig. 3,
MCP consists of 3 parts, i.e., a CNN-based local feature extractor,
an attention-based relation encoder, and an action decoder.

The local feature extractor is a weight-sharing 3-layer CNN
and can extract a 𝐺 ×𝐺 × 4 feature embedding from each agent’s
𝑆 × 𝑆 × 7 local information, which includes one obstacle channel,
one explored region channel, one-hot location channel, one trajec-
tory channel to represent the history trace, and three agent-view
channels of the agent’s local observation.

The agents transmit extracted feature embedding instead of the
raw local information, which greatly reduces communication traffic
by 1 − 𝐺×𝐺×4

𝑆×𝑆×7 = 1 − 4
7𝛼2 times where 𝛼 = 𝑆/𝐺 . For example, we

adopt 𝐺 = 5 in grid-based environments, thus the communication
traffic reduces ∼ 97% in 𝑆 = 25 maps and ∼ 93% in 𝑆 = 15 maps.

The relation encoder aims to aggregate the extracted feature
maps from different agents to better capture the intra-agent in-
teractions. In team-based exploration, an agent should not only
spot undiscovered areas but also inter-teammates’ movement for
better scheduling among agents. We adopt a simplified Trans-
former [26] block as the team-size-invariant relation encoder. In-
spired by the vision transformer model [9], we apply multi-head
cross-attention [25] to derive a single team-size-invariant represen-
tation of size 𝐺 ×𝐺 × 4, as shown in Fig. 3.

Finally, the action decoder predicts the agent’s policy from the
aggregated representation as a multi-variable Categorical distribu-
tion to select a grid cell 𝑔 from a plane as the global goal (𝑢𝑥 , 𝑢𝑦).
Note that in Habitat, in order to produce accurate global goals, we
adopt a spatial action space with three separate action heads, i.e.,
two discrete region heads for choosing a grid cell 𝑔, which are the
same as grid-based environments, and two additional continuous
point heads for outputting a coordinate (Δ𝑥 ,Δ𝑦), indicating the



Figure 2: Overview of Asynchronous Coordination Explorer (ACE).

relative position of the global goal within the selected region 𝑔.
Details of MCP in Habitat can be found in Appendix A.2.

Figure 3: Workflow of Multi-tower-CNN-based Policy (MCP),
including a CNN-based local feature extractor, a relation
encoder, and an action decoder.

4.4 Overall Architecture
As shown in Fig. 2, each agent observes the local information and
requests the latest feature embedding from other agents, which
is output by the weight-sharing local feature extractor, at each
action-making step. That is, agents only need to transfer the low-
dimensional feature embedding, instead of the entire local infor-
mation. The multi-tower-CNN-based policy, which is trained by
Async-MAPPO, generates the next macro action, i.e., global goal, at
each action-making step, and the agent performs path planning on
the local map according to the global goal, outputting the atomic
action at each time step. Note that agents could go offline in multi-
agent tasks due to unexpected network communication traffic or
hardware failure.

5 ENVIRONMENT DETAILS
5.1 Environment Setting
Grid-based scenario: As shown in Fig. 4, we implement a multi-
agent exploration task based on the GridWorld simulator [6], which
was originally designed for synchronous settings. We consider

two different map sizes, which are 15 × 15 with 4 ∼ 9 random
rooms and 25 × 25 with 4 ∼ 25 random rooms. All the agents
are uniform randomly spread over the map in the beginning. The
local information of each robot is fed to the RL-trained policy or
planning-based methods to generate a global goal and𝐴★ algorithm
is utilized to plan 5 atomic actions on the local map to follow the
global goal.

We also set up a 15 × 15 real-world grid map which is the same
as the grid-based simulation, and each grid is 0.31m long, as shown
in Fig. 4. Our robots are equipped with Mecanum steering and an
NVIDIA Jetson Nano processor. The locations and poses of robots
are tracked by OptiTrack cameras and the Motive motion capture
software. After training a policy in the grid-based simulator under
15 × 15 map with random rooms, we directly deploy it to the real-
world robot system. Each real robot executes in a distributed and
asynchronous manner. The robot adopts a request-send mechanism
to obtain the newest feature embedding of other agents through
ROS topic upon finishing all atomic actions.

Habitat:We adopt map data from the Gibson dataset [32] while
the visual signals and dynamics are simulated by Habitat [20]. We
follow the same environment configuration in [39] and use a pre-
trained neural SLAM model to predict the robot pose and the local
map. Full details of Habitat can be found in Appendix A.

5.2 Observation Space
The input of RL-trained MCP is an 𝑆 × 𝑆 image with 7 channels,
where 𝑆 is the max size of the map. The channels represent obsta-
cles, the explored mask, the agent location, the trajectory, and three
𝐻×𝑊 agent-view. Note that each agent onlymaintains its locally ob-
served information, which is memory and communication-efficient
for real-world deployment.

5.3 Action Space
The overall exploration framework is hierarchical, with a global
goal (macro action) followed by several atomic actions towards the
goal. The action of the policy is to generate a global goal (𝑢𝑥 , 𝑢𝑦)
chosen in the map, representing a discrete grid in grid-based envi-
ronments or a continuous location in Habitat [20]. The available
atomic actions are moving forward, turning left, and turning right
provided by the simulator.

5.4 Reward Function
The team-based reward function is the sum of the coverage reward,
success reward, and overlap penalty. Let 𝑅𝑎𝑡𝑖𝑜𝑡 denote the total
coverage ratio at time 𝑡 , 𝐸𝑥𝑝𝑡𝑎 be the explored map by agent 𝑎 and



Figure 4: The illustration of the grid-based simulator and real-world robot system.

𝐸𝑥𝑝𝑡 denote the merged explored map by all agents. Both 𝐸𝑥𝑝𝑡 and
𝐸𝑥𝑝𝑡𝑎 are sets of explored areas. The reward terms are defined as
follows.
• Coverage Reward: It is proportional to the size of the newly
discovered region by the team 𝐸𝑥𝑝𝑡\𝐸𝑥𝑝𝑡−1.
• Success Reward: Agent 𝑎 gets a success reward of 𝑅𝑎𝑡𝑖𝑜𝑡
when 𝐶% coverage ratio is reached, which 𝐶 = 98 in the
grid-like simulator and 𝐶 = 90 in Habitat1.
• Overlap Penalty: The overlap penalty 𝑟𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is designed
to penalize repetitive exploration and encourage cooperation
with others. It is defined as

𝑟𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =

{
−𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 × 0.01, 𝑅𝑎𝑡𝑖𝑜𝑡 < 0.9
0, 𝑅𝑎𝑡𝑖𝑜𝑡 ≥ 0.9 ,

where 𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is the increment of the overlapped explored
area between agent 𝑎 and other agents. The overlapped area
between agent 𝑎 and agent𝑤 is𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑡𝑎,𝑤 = 𝐸𝑥𝑝𝑡𝑎 ∩𝐸𝑥𝑝𝑡𝑤 ,
and 𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =

∑
𝑤∈{1,· · · ,𝑛}\{𝑎} 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝑡
𝑎,𝑤\𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑡−1

𝑎,𝑤 .

6 EXPERIMENT RESULTS
6.1 Training Details
In the simulation, every RL policy is trained with 50𝑀 steps in
the grid-based simulator and 100𝑀 steps in Habitat over 3 random
seeds. All results are averaged over a total of 300 testing episodes
(100 episodes per random seed). As for real-world testing, we ran-
domly generate 10 maps of size 15 × 15 and test 5 times for each
map. In synchronous action-making cases, agents perform action-
making at the same time and wait for all other agents to finish. In
asynchronous action-making cases, agents do not wait for others
and perform both macro and atomic actions independently.

6.2 Evaluation Metrics
The most important metric in our experiment is Time, which is the
running time for the agents to reach a𝐶% coverage ratio. We report
wall-clock time in the real world, and report an estimated statistical
running time in simulation: turning left or right takes 0.5𝑠 ; stepping
forward takes 1𝑠 . Policy inference time is fixed to 0.1𝑠 for both RL
and planning-based methods thus the results can better reflect the
difference between asynchronous and synchronous settings.

We also consider 3 additional statistics metrics to capture dif-
ferent characteristics of a particular exploration strategy. These
1Maps in Habitat are harder than in the grid-based simulator, leading to differences in
the success rate threshold.

metrics are only for analysis, and we primarily focus on Time as
our performance criterion.
• Accumulative Coverage Score (ACS): The overall exploration
progress throughout an episode computed as𝐴𝑇 =

∫ 𝑇

𝑡=0 𝑅𝑎𝑡𝑖𝑜
𝑡 ,

where 𝑇 is the max running time. Higher ACS implies faster
exploration.
• Coverage: the final ratio of explored area when an episode
terminates. Higher implies more exhaustive exploration.
• Overlap: the ratio of the overlapped region explored by mul-
tiple agents to the current explored area when C% coverage
is reached. Lower Overlap implies better credit assignment.

All metrics are calculated with the running time 𝑡 , i.e., the esti-
mated statistical time in simulation and wall-clock time in the real
world. Each score is reported as "mean (standard deviation)".

6.3 Baselines
We consider 4 popular planning-based competitors, including a
utility-maximizing method (Utility) [11], a search-based nearest-
frontiermethod (Nearest) [34], a rapid-exploring-random-tree-based
method (RRT ) [24], and an artificial potential fieldmethod (APF ) [40]
which applies resistance forces among agents as a cooperation
mechanism. Note that APF is a multi-agent baseline while the
other three are commonly used for single-agent tasks. Moreover, all
baselines use global information to do planning after every macro
action. Different from ACE, they are not learning-based and are all
designed for asynchronous execution.

6.4 Grid-Based Scenario
6.4.1 Main Results. Experiment results with 2 agents in the grid-
based simulator under synchronous and asynchronous training are
provided in Table 1. In both settings, ACE outperforms planning-
based baselines with ≥ 10% less Time, full Coverage, and higher ACS.
Although APF encourages cooperation, its Overlap is still higher
than ACE, demonstrating ACE’s superiority in discovering efficient
cooperation strategies. Comparing ACE with MAPPO, which is
trained in a synchronous manner, ACE demonstrates similar𝐴𝐶𝑆 to
MAPPO with less Time and Overlap, which indicates the robustness
of ACE to realistic execution with randomized action delay. Results
of 3 agents can be found in appendix D.

6.4.2 Generalization to Agent Lost. We further consider an-
other setting where the team size decreases within an episode on
map size 25× 25 to emulate the real-world scenarios with hardware
failure and to examine whether our learned policies can generalize



Map Size Methods Synchronous Action Making Asynchronous Action Making

Time ↓ Overlap ↓ Coverage ↑ ACS ↑ Time ↓ Overlap ↓ Coverage ↑ ACS ↑

15 × 15

Utility 40.81(0.94) 0.45(0.02) 1.00(0.00) 88.80(0.08) 35.75(0.99) 0.42(0.01) 1.00(0.00) 90.01(0.14)

Nearest 25.44(0.53) 0.17(0.01) 1.00(0.00) 91.60(0.17) 22.59(0.34) 0.17(0.01) 1.00(0.00) 92.47(0.17)

RRT 28.86(0.99) 0.18(0.01) 1.00(0.00) 91.46(0.03) 25.85(0.36) 0.19(0.01) 1.00(0.00) 92.36(0.08)

APF 24.95(0.76) 0.17(0.01) 1.00(0.00) 91.57(0.39) 21.56(0.43) 0.17(0.01) 1.00(0.00) 92.52(0.37)

Voronoi 48.57(3.64) 0.33(0.01) 1.00(0.00) 86.43(0.33) 42.94(4.05) 0.20(0.01) 1.00(0.00) 88.16(0.57)

MAPPO 24.75(0.45) 0.08(0.02) 1.00(0.00) 92.39(0.19) 21.92(0.90) 0.09(0.01) 1.00(0.00) 93.18(0.17)

ACE 21.76(0.79) 0.07(0.00) 1.00(0.00) 92.54(0.21) 18.66(0.79) 0.07(0.01) 1.00(0.00) 93.39(0.14)

25 × 25

Utility 189.38(0.93) 0.46(0.05) 0.93(0.01) 139.31(1.56) 183.71(1.59) 0.50(0.04) 0.95(0.01) 144.64(1.42)

Nearest 113.48(1.73) 0.24(0.01) 1.00(0.00) 161.40(0.63) 99.52(2.00) 0.24(0.01) 1.00(0.00) 166.53(0.91)

RRT 120.15(2.29) 0.20(0.01) 1.00(0.00) 164.35(0.64) 105.64(1.69) 0.21(0.01) 1.00(0.00) 168.33(0.27)

APF 101.41(0.78) 0.23(0.01) 1.00(0.00) 162.46(0.64) 90.00(1.48) 0.23(0.01) 1.00(0.00) 166.82(0.81)

Voronoi 131.65(0.41) 0.23(0.01) 1.00(0.00) 160.92(0.33) 117.14(0.13) 0.20(0.01) 1.00(0.00) 165.35(0.27)

MAPPO 90.15(1.08) 0.08(0.01) 1.00(0.00) 168.54(0.58) 82.55(2.70) 0.09(0.01) 1.00(0.00) 171.72(0.27)

ACE 83.34(0.44) 0.06(0.00) 1.00(0.00) 170.03(0.49) 74.36(2.93) 0.06(0.00) 1.00(0.00) 173.16(0.72)

Table 1: Performances of different methods under 2-agent synchronous and asynchronous settings in the grid-based simulator.

Metrics Utility Nearest RRT APF ACE

3⇒ 2

Time ↓ 139.33(1.79) 76.53(1.16) 81.86(1.14) 74.80(2.11) 67.50(1.42)

Overlap ↓ 0.48(0.03) 0.30(0.01) 0.27(0.00) 0.32(0.01) 0.22(0.00)

Coverage ↑ 0.94(0.01) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

ACS ↑ 110.56(1.11) 126.03(0.39) 126.75(0.18) 125.15(0.58) 128.49(0.37)

4⇒ 3

Time ↓ 96.15(0.46) 53.68(1.01) 55.33(0.82) 52.26(0.68) 48.88(1.82)

Overlap ↓ 0.40(0.03) 0.36(0.00) 0.34(0.01) 0.38(0.01) 0.33(0.07)

Coverage ↑ 0.92(0.01) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

ACS ↑ 73.28(1.55) 84.05(0.57) 84.08(0.41) 83.60(0.41) 84.78(0.77)

Table 2: Performance of different methods with decreased team size on 25 × 25 maps in the grid-based simulator.

Methods Utility Nearest RRT APF MAPPO ACE

Time(s) 60.25(0.16) 38.72(0.12) 55.89(0.24) 52.64(0.23) 28.48(0.12) 25.61(0.10)

Table 3: Running time of different methods when the coverage ratio reaches 100% in the real-world robot system.

to these extreme cases during execution. “𝑁1 ⇒ 𝑁2” denotes a
scenario with 𝑁1 agents at the beginning and only 𝑁2 agents alive
after 50% coverage. As shown in Table 2, ACE demonstrates 10%
less Time than other baselines and obtains the highest ACS and
lowest Overlap, indicating ACE’s effective zero-shot adaptation to
extreme situations where some agents go offline.
6.4.3 Real-World Robot System. In this part, we present the
running time of different methods with 2 agents in real-world explo-
ration tasks on 15×15 maps, which are running in an asynchronous
manner. The deployment pipeline is described in Sec. 5.1. As shown
in Table 3, two RL-based methods, MAPPO and ACE, outperform
the planning-based baselines with a large margin according to the
total exploration time. In particular, ACE reduces 33.86% real-world
exploration time than the fastest planning-based method Nearest.

Besides, ACE reduces 10.07% running time compared with MAPPO,
proving that combining action-delay randomization with Async-
MAPPO indeed improves the efficiency of multi-agent exploration.

6.5 Habitat Results
6.5.1 Main Results. We extend ACE to a vision-based environ-
ment, Habitat. Table 4 shows the performance of different meth-
ods under 2-agent asynchronous action-making settings. Despite
having higher Overlap due to more exhaustive exploration, ACE
outperforms planning-based baselines with ≥ 28% less Time, higher
Coverage and ACS. Compared with synchronous MAPPO, ACE still
shows higher Coverage and ACS with less Time, demonstrating the
effectiveness of ACE in more complicated vision-based tasks.



6.5.2 Generalization to Agent Lost. We also consider the set-
ting of decreased team sizes in Habitat, and we follow the same
experimental setup as for the grid-based simulations. Table 5 shows
the performance of different methods with decreased team size (2
⇒ 1). ACE demonstrates 5.3% less Time than other baselines and
obtains the highest Coverage and ACS with comparable Overlap,
which indicates the ACE’s ability to generalize to agent lost.

Methods Time ↓ Overlap ↓ Coverage ↑ ACS ↑
Utility 273.83(37.80) 0.84(0.03) 0.83(0.08) 186.17(17.43)

Nearest 220.25(30.23) 0.59(0.04) 0.94(0.03) 180.05(7.37)

RRT 177.29(17.16) 0.63(0.06) 0.97(0.02) 187.35(6.86)

APF 218.45(24.64) 0.67(0.04) 0.94(0.02) 188.62(7.67)

MAANS 133.23(17.72) 0.68(0.09) 0.97(0.01) 201.33(7.98)

ACE 127.62(8.55) 0.78(0.07) 0.98(0.01) 213.81(9.33)

Table 4: Performance of different methods under 2-agent
asynchronous action-making settings in Habitat.

Methods Time ↓ Overlap ↓ Coverage ↑ ACS ↑
Utility 281.09(32.25) 0.48(0.05) 0.84(0.08) 153.02(12.38)

Nearest 309.76(9.83) 0.40(0.03) 0.85(0.05) 149.43(4.55)

RRT 260.31(27.92) 0.35(0.03) 0.92(0.02) 155.23(6.04)

APF 309.88(6.63) 0.42(0.01) 0.79(0.01) 143.54(0.83)

MAANS 262.92(19.84) 0.35(0.04) 0.90(0.03) 160.90(6.68)

ACE 246.38(19.26) 0.36(0.03) 0.92(0.03) 164.32(8.23)

Table 5: Performance of different methods with decreased
team size in Habitat.

6.6 Ablation Studies
In this section, we analyze the sensitivity of communication size
and action-delay randomization based on the grid-like simulator
through ablation studies.

6.6.1 Sensitivity Analysis of Communication Size. We study
the exploration performances in different communication traffic
scenarios, including:
• No Comm.: The attention-based relation encoder is re-
moved. Therefore, agents can only use their own local infor-
mation to perform macro actions. This is the lower bound
of different communication traffic.
• Comm. (0.25x): The number of channels output by the CNN
local feature extractor is set to 1, which is a quarter of the
original 4 channels.
• Comm. (0.5x): The number of CNN local feature extractor
output channels is set to 2.
• Perf. Comm.: Agents use merged observation from all the
agents as the input of the CNN local feature extractor.

Table 6 summarizes the performances on different communica-
tion traffic with 2 agents on 25 × 25 maps. More communication
between agents generally leads to better exploration efficiency, as is
shown by the decreasing Time and increasingACS from “No Comm.”
to “Comm. (0.25x)”, “Comm. (0.5x)” and “Perf. Comm.”. Moreover,

the behavior metric Overlap in these four scenarios shows better
cooperation efficiency with more communication. Note that ACE
performs even better than “Perf. Comm.” with strictly less commu-
nication, demonstrating the effectiveness of the feature embedding
extracted from our CNN policy for decision-making.

Methods Time ↓ Overlap ↓ Coverage ↑ ACS ↑
No Comm. 159.26(2.18) 0.37(0.01) 0.93(0.01) 151.87(1.82)

Comm. (0.25x) 110.92(1.33) 0.11(0.01) 0.99(0.00) 167.60(0.71)

Comm. (0.5x) 83.77(1.38) 0.09(0.00) 1.00(0.00) 170.90(0.60)

Perf. Comm. 75.62(0.84) 0.06(0.01) 1.00(0.00) 173.15(0.53)

ACE 74.36(2.93) 0.06(0.00) 1.00(0.00) 173.16(0.72)

Table 6: Performance with different communication traffic.

Intervals Time ↓ Overlap ↓ Coverage ↑ ACS ↑
Rand (1-10) 60.24(0.35) 0.51(0.00) 1.00(0.00) 82.44(0.31)

Rand (5-10) 56.41(1.51) 0.47(0.01) 1.00(0.00) 83.46(0.35)

Rand (1-5) 55.69(1.23) 0.43(0.01) 1.00(0.00) 83.57(0.45)

ACE (3-5) 48.88(1.82) 0.33(0.07) 1.00(0.00) 84.78(0.77)

Table 7: Performance of different action-delay intervals.

6.6.2 Sensitivity Analysis of Action-Delay Randomization.
We further study the impact of the different random action-delay
intervals. Besides the randomization interval stated in Sec. 4.2, we
consider 3 different choices of action-delay intervals during train-
ing, “Rand (1-10)”, “Rand (5-10)”, and “Rand (1-5)”. “Rand (𝑀1−𝑀2)”
means each macro action execution is delayed for a random number
of simulation steps uniformly sampled from [𝑀1, 𝑀2]. We empir-
ically find that these variants have similar performance in most
simple test settings, while ACE outperforms them in some extreme
cases. To better illustrate the effect of different action-delay choices,
we present the results in the “4⇒ 3” setting, an extreme scenario
with agent loss. As shown in Table 7, ACE consumes the least Time
and achieves the highest ACS. The results show that action-delay
randomization works best with a proper randomization interval,
while a large randomization interval adds high uncertainty during
training and hurts the final performance.

7 CONCLUSION
To bridge the gap between synchronous simulator and asynchro-
nous action-making process in real-world multi-agent exploration
task, we propose a novel real-world multi-robot exploration so-
lution, Asynchronous Coordination Explorer (ACE) to tackle this
challenge. In ACE, Multi-agent PPO (MAPPO) is extended to the
asynchronous action-making setting for effective training, and an
action-delay-randomization technique is applied for better gen-
eralization to the real world. Besides, each agent equipped with
a team-size-invariant Multi-tower-CNN-based Policy (MCP), ex-
tracts and broadcasts the low-dimensional feature embedding to
accomplish efficient intra-agent communication. Although we aim
at the sim-to-real problem caused by multiple agents executing
tasks asynchronously, There are still many issues that have not
been fully considered, such as communication errors, localization
errors, and sensor errors. we leave these issues as our future work.



ACKNOWLEDGMENT
This research was supported by National Natural Science Foun-
dation of China (No.U19B2019, 62203257, M-0248), Tsinghua Uni-
versity Initiative Scientific Research Program, Tsinghua-Meituan
Joint Institute for Digital Life, Beijing National Research Center for
Information Science, Technology (BNRist), and Beijing Innovation
Center for Future Chips and 2030 InnovationMegaprojects of China
(Programme on New Generation Artificial Intelligence) Grant No.
2021AAA0150000.

REFERENCES
[1] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser. 2017. Simultane-

ous localization and mapping: A survey of current trends in autonomous driving.
IEEE Transactions on Intelligent Vehicles 2, 3 (2017), 194–220.

[2] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E Schneider. 2005.
Coordinated multi-robot exploration. IEEE Transactions on robotics 21, 3 (2005),
376–386.

[3] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and
Ruslan Salakhutdinov. 2020. Learning to explore using active neural slam. In
International Conference on Learning Representations. ICLR.

[4] Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. 2021. Delay-aware model-
based reinforcement learning for continuous control. Neurocomputing 450 (2021),
119–128. https://doi.org/10.1016/j.neucom.2021.04.015

[5] Tao Chen, Saurabh Gupta, and Abhinav Gupta. 2019. Learning exploration
policies for navigation. In International Conference on Learning Representations.
ICLR.

[6] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. 2018. Minimalistic
Gridworld Environment for OpenAI Gym. https://github.com/maximecb/gym-
minigrid.

[7] William W Cohen. 1996. Adaptive mapping and navigation by teams of simple
robots. Robotics and autonomous systems 18, 4 (1996), 411–434.

[8] Christian Dornhege and Alexander Kleiner. 2013. A frontier-void-based approach
for autonomous exploration in 3d. Advanced Robotics 27, 6 (2013), 459–468.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[10] Hangtian Jia, Yujing Hu, Yingfeng Chen, Chunxu Ren, Tangjie Lv, Changjie Fan,
and Chongjie Zhang. 2020. Fever basketball: A complex, flexible, and asynchro-
nized sports game environment for multi-agent reinforcement learning. arXiv
preprint arXiv:2012.03204 (2020).

[11] Miguel Juliá, Arturo Gil, and Oscar Reinoso. 2012. A comparison of path planning
strategies for autonomous exploration and mapping of unknown environments.
Autonomous Robots 33, 4 (2012), 427–444.

[12] Alexander Kleiner, Johann Prediger, and Bernhard Nebel. 2006. RFID technology-
based exploration and SLAM for search and rescue. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 4054–4059.

[13] Qian Long, Zihan Zhou, Abhinav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang.
2020. Evolutionary Population Curriculum for Scaling Multi-Agent Reinforce-
ment Learning. In International Conference on Learning Representations.

[14] Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller, Vladlen Koltun,
and Davide Scaramuzza. 2021. Learning high-speed flight in the wild. Sci-
ence Robotics 6, 59 (2021), eabg5810. https://doi.org/10.1126/scirobotics.abg5810
arXiv:https://www.science.org/doi/pdf/10.1126/scirobotics.abg5810

[15] Shayegan Omidshafiei, Ali-akbar Agha-mohammadi, Christopher Amato, and
Jonathan P. How. 2015. Decentralized Control of Partially Observable Markov
Decision Processes using Belief Space Macro-actions. CoRR abs/1502.06030 (2015).
arXiv:1502.06030 http://arxiv.org/abs/1502.06030

[16] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefow-
icz, Bob McGrew, Jakub W. Pachocki, Jakub Pachocki, Arthur Petron, Matthias
Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin,
Peter Welinder, Lilian Weng, and Wojciech Zaremba. 2018. Learning Dexter-
ous In-Hand Manipulation. CoRR abs/1808.00177 (2018). arXiv:1808.00177
http://arxiv.org/abs/1808.00177

[17] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
2017. Sim-to-Real Transfer of Robotic Control with Dynamics Randomization.
CoRR abs/1710.06537 (2017). arXiv:1710.06537 http://arxiv.org/abs/1710.06537

[18] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. 2019. A review
of mobile robots: Concepts, methods, theoretical framework, and applications.
International Journal of Advanced Robotic Systems 16, 2 (2019), 1729881419839596.

[19] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Polle-
feys, Timothy Lillicrap, and Sylvain Gelly. 2019. Episodic curiosity through
reachability. In International Conference on Learning Representations. ICLR.

[20] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, ErikWijmans,
Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. 2019.
Habitat: A platform for embodied ai research. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 9339–9347.

[21] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. 2017. Domain randomization for transferring deep neural networks
from simulation to the real world. In 2017 IEEE/RSJ international conference on
intelligent robots and systems (IROS). IEEE, 23–30.

[22] Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. 2017. Domain Randomization for Transferring Deep Neural
Networks from Simulation to the Real World. CoRR abs/1703.06907 (2017).
arXiv:1703.06907 http://arxiv.org/abs/1703.06907

[23] Jaden B. Travnik, Kory W. Mathewson, Richard S. Sutton, and Patrick M. Pilarski.
2018. Reactive Reinforcement Learning in Asynchronous Environments. Frontiers
in Robotics and AI 5 (2018). https://doi.org/10.3389/frobt.2018.00079

[24] Hassan Umari and Shayok Mukhopadhyay. 2017. Autonomous robotic explo-
ration based on multiple rapidly-exploring randomized trees. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 1396–1402.
https://doi.org/10.1109/IROS.2017.8202319

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc.

[27] Lukas von Stumberg, Vladyslav Usenko, Jakob Engel, Jörg Stückler, and Daniel
Cremers. 2017. From monocular SLAM to autonomous drone exploration. In
2017 European Conference on Mobile Robots (ECMR). IEEE, 1–8.

[28] Haiyang Wang, Wenguan Wang, Xizhou Zhu, Jifeng Dai, and Liwei Wang. 2021.
Collaborative Visual Navigation. arXiv preprint arXiv:2107.01151 (2021).

[29] Tonghan Wang*, Jianhao Wang*, Yi Wu, and Chongjie Zhang. 2020. Influence-
Based Multi-Agent Exploration. In International Conference on Learning Repre-
sentations.

[30] Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu,
Yingfeng Chen, Changjie Fan, and Yang Gao. 2020. From Few toMore: Large-Scale
Dynamic Multiagent Curriculum Learning. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020. AAAI Press, 7293–7300.

[31] Kai M Wurm, Cyrill Stachniss, and Wolfram Burgard. 2008. Coordinated multi-
robot exploration using a segmentation of the environment. In 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 1160–1165.

[32] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio
Savarese. 2018. Gibson env: Real-world perception for embodied agents. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
9068–9079.

[33] Yuchen Xiao, Weihao Tan, and Christopher Amato. 2022. Asynchronous Actor-
Critic for Multi-Agent Reinforcement Learning. https://doi.org/10.48550/ARXIV.
2209.10113

[34] Brian Yamauchi. 1997. A frontier-based approach for autonomous exploration.
In Proceedings 1997 IEEE International Symposium on Computational Intelligence
in Robotics and Automation CIRA’97.’Towards New Computational Principles for
Robotics and Automation’. IEEE, 146–151.

[35] Jiachen Yang, Alireza Nakhaei, David Isele, Kikuo Fujimura, and Hongyuan
Zha. 2020. CM3: Cooperative Multi-goal Multi-stage Multi-agent Reinforcement
Learning. In International Conference on Learning Representations.

[36] Meng Yao, Qiyue Yin, Jun Yang, Tongtong Yu, Shengqi Shen, Junge Zhang, Bin
Liang, and Kaiqi Huang. 2021. The Partially Observable Asynchronous Multi-
Agent Cooperation Challenge. arXiv preprint arXiv:2112.03809 (2021).

[37] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
2021. The surprising effectiveness of mappo in cooperative, multi-agent games.
arXiv preprint arXiv:2103.01955 (2021).

[38] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
2021. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games.
https://doi.org/10.48550/ARXIV.2103.01955

[39] Chao Yu, Xinyi Yang, Jiaxuan Gao, Huazhong Yang, Yu Wang, and Yi Wu. 2021.
Learning Efficient Multi-Agent Cooperative Visual Exploration. arXiv preprint
arXiv:2110.05734 (2021).

[40] Jincheng Yu, Jianming Tong, Yuanfan Xu, Zhilin Xu, Haolin Dong, Tianxiang
Yang, and Yu Wang. 2021. SMMR-Explore: SubMap-based Multi-Robot Explo-
ration System with Multi-robot Multi-target Potential Field Exploration Method.
In 2021 IEEE International Conference on Robotics and Automation (ICRA).

[41] Fengda Zhu, Siyi Hu, Yi Zhang, Haodong Hong, Yi Zhu, Xiaojun Chang, and
Xiaodan Liang. 2021. MAIN: A Multi-agent Indoor Navigation Benchmark for
Cooperative Learning. (2021).

https://doi.org/10.1016/j.neucom.2021.04.015
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
https://doi.org/10.1126/scirobotics.abg5810
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/scirobotics.abg5810
https://arxiv.org/abs/1502.06030
http://arxiv.org/abs/1502.06030
https://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
https://arxiv.org/abs/1710.06537
http://arxiv.org/abs/1710.06537
https://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1703.06907
https://doi.org/10.3389/frobt.2018.00079
https://doi.org/10.1109/IROS.2017.8202319
https://doi.org/10.48550/ARXIV.2209.10113
https://doi.org/10.48550/ARXIV.2209.10113
https://doi.org/10.48550/ARXIV.2103.01955

	Abstract
	1 Introduction
	2 Related Work
	2.1 Cooperative Exploration
	2.2 Sim2real Transfer

	3 Preliminary
	3.1 Task Setup
	3.2 Problem Formulation
	3.3 Connection to Conventional MARL

	4 Methodology
	4.1 Async-MAPPO
	4.2 Action-Delay Randomization
	4.3 Multi-Tower-CNN-Based Policy
	4.4 Overall Architecture

	5 Environment Details
	5.1 Environment Setting
	5.2 Observation Space
	5.3 Action Space
	5.4 Reward Function

	6 Experiment Results
	6.1 Training Details
	6.2 Evaluation Metrics
	6.3 Baselines
	6.4 Grid-Based Scenario
	6.5 Habitat Results
	6.6 Ablation Studies

	7 Conclusion
	References

