Automatic Truss Design with Reinforcement Learning

Weihua Du1,*, Jinglun Zhao1,4,*, Chao Yu1, Xingcheng Yao1, Zimeng Song1, Siyang Wu1, Ruifeng Luo3, Zhiyuan Liu2, Xianzhong Zhao2,4 and Yi Wu1,4
1Institute for Interdisciplinary Information Sciences, Tsinghua University
2Tongji University
3East China Architectural Design & Research Institute Co., Ltd.
4Shanghai Qi Zhi Institute
{duwh20, zhaojl22}@mails.tsinghua.edu.com

Abstract

Truss layout design, namely finding a lightweight truss layout satisfying all the physical constraints, is a fundamental problem in the building industry. Generating the optimal layout is a challenging combinatorial optimization problem, which can be extremely expensive to solve by exhaustive search. Directly applying end-to-end reinforcement learning (RL) methods to truss layout design is infeasible either, since only a tiny portion of the entire layout space is valid under the physical constraints, leading to particularly sparse rewards for RL training. In this paper, we develop AutoTruss, a two-stage framework to efficiently generate both lightweight and valid truss layouts. AutoTruss first adopts Monte Carlo tree search to discover a diverse collection of valid layouts. Then RL is applied to iteratively refine the valid solutions. We conduct experiments and ablation studies in popular truss layout design test cases in both 2D and 3D settings. AutoTruss outperforms the best-reported layouts by 25.1% in the most challenging 3D test cases, resulting in the first effective deep-RL-based approach in the truss layout design literature.

1 Introduction

Truss layout design and optimization is a crucial and fundamental research topic in the building industry, as truss layouts can be found in a wide range of structures, including bridges, towers, roofs, floors [Stolpe, 2016; Alhaddad et al., 2020] and even in aerospace and automotive sectors [Wang et al., 2019]. As a basic component in building structures, a truss can support heavy loads and span long distances with a small amount of construction material. Efficient truss layout design can lead to significant cost savings and can also improve the physical performance and safety of the structure.

However, truss layout design is an NP-hard combinatorial optimization problem, which involves the optimization of node locations, topology between nodes, and the cross-sectional areas of connecting bars [Fenton et al., 2015]. The possible search space for truss layouts is huge, nonlinear, and non-convex. There are also a number of constraints that must be satisfied, including material strength, displacement allowance, and stability of structural members [Luo et al., 2022b]. Traditionally, engineers design and optimize truss layouts using a combination of mathematical analysis and physical testing based on domain knowledge. They analyze the structural behavior and iteratively adjust the size and shape based on initial sketches [Dorn, 1964]. These methods rely heavily on subjective human expertise, resulting in a cumbersome and restrictive design process. An automated design approach is crucial for achieving greater efficiency and flexibility in the design process.

Previous studies have attempted to automate the design of truss layouts using heuristic algorithms, such as genetic algorithms [Permyakov et al., 2006], particle swarm optimization [Luh and Lin, 2011], simulated annealing [Lamberti, 2008], and differential evolution [Ho-Huu et al., 2016]. However, the size and the complexity of the search space impeded the achievement of optimal results. Note that the entire search space, including node positions, is continuous, and a tiny position change may drastically influence the physical performance of the entire truss layout. So, directly applying search-based methods can be particularly expensive. A low-resolution discretization over the search space may easily miss out on the optimal positions and lead to low-quality solutions [Luo et al., 2022b].

Reinforcement learning (RL) methods have achieved strong results in solving combinatorial optimization problems [Mazavkina et al., 2021], such as the Traveling Salesman Problem (TSP) [Bello et al., 2016] and drug design [Jeon and Kim, 2020; Yoshimori et al., 2020]. These problems require the solver to find the optimal combination of a finite set of choices to maximize a certain objective function. Truss layout design is a similar combinatorial problem but it has the following differences. Unlike TSP problems where any order of the cities is feasible, truss layout design and optimization have tight physical constraints, making most truss layouts generated from random actions invalid. This in turn makes reward signals sparse for RL training. The objective function is also more complex than that in TSP, since there are more performance indices, like capacity and stability, beyond total mass. The settings of truss layout design are more similar to virtual screening in drug design, namely identifying potential drug candidates from large libraries of compounds [Yoshimori et al., 2020]. They both have complex constraints and
generating valid truss layouts, but with sub-optimal quality [Luo et al., 2022b]. On the other hand, RL can produce fine-grained refinement of truss layouts but suffer from sparse rewards. Therefore, we combine them as a two-stage search-and-refine algorithm named AutoTruss. In the search stage, we run a search-based method, Upper Confidence bounds applied to Trees (UCT), to derive diverse truss layouts under all physical constraints. In the refinement stage, we adopt the SAC algorithm to train an RL policy for refining the valid truss layouts from the search stage. We conduct experiments in both 2D and 3D cases, and results show that AutoTruss improved the SOTA performance by 6.8% on average in 2D test cases and as much as 25.1% in the more challenging 3D test cases.

2 Related Work

2.1 Truss Representation

A concise representation of a truss layout is fundamental for the truss layout design, which should capture both geometry and load conditions. There are mainly two types of representations: voxel-based [Li et al., 2022], and graph-based [Stolpe, 2016]. We adopt the graph-based method for its accuracy and flexibility. The voxel-based methods divide the design space into small, three-dimensional units called voxels, each assigned a value representing material density [Li et al., 2022; Klemmt, 2023; Du et al., 2018]. These methods cope well with boundary conditions, but cannot accommodate continuous variations in truss topology and is prone to discretization errors.

On the other hand, graph-based methods represent the truss layout as a graph, consisting of coordinates of nodes, bars connecting the nodes, and member area sizes [Fenton et al., 2015; Stolpe, 2016; Lieu, 2022], but often simplifying it to follow certain grids or only connecting neighboring nodes. Based on a graph-based approach, our method adopts a continuous additive method, allowing for greater flexibility in node connection and truss layout by adding nodes and connections freely from scratch. Furthermore, Graph Neural Network (GNN) [Scarselli et al., 2008] is well-suited for processing graph-structured data and complex relationships between elements, thus it is widely used in various real-world applications such as social networks [Li et al., 2021], chemistry [Fung et al., 2021; Yang et al., 2021], and recommendation systems [Guo and Wang, 2020; Wu et al., 2019a].

2.2 Truss Design and Optimization

There have been various methods for truss layout design and optimization over the years. Traditionally, engineers designed truss layouts based on sketches by experience and refined them with analytical math tools [Dorn, 1964]. This empirical method is time-consuming and far from accurate. With the advancement of technology, computer algorithms based on finite element analysis (FEA) have been adopted for faster and more efficient design [Mai et al., 2021]. These algorithms can be divided into two categories: gradient-based and non-gradient-based. Gradient-based algorithms, such as steepest descent, are efficient in converging to a solution but can be complex to implement mathematically and often produces local solutions [Banh et al., 2021; Nguyen and Banh, 2018; Banh and Lee, 2019; Lieu, 2022]. On the other hand, non-gradient-based algorithms, such as differential evolution (DE) and genetic algorithms (GA), do not require derivative calculations and are more flexible and robust in the presence of multiple local optima. As a relatively new entrant in this category, Monte Carlo Tree Search (MCTS) [Coulom, 2007] has shown to be highly effective in large search spaces with the success of AlphaGo [Silver et al., 2016], as it balances exploration and exploitation [Luo et al., 2022b; Luo et al., 2022a]. Different from previous works which simultaneously optimize truss topology and member sizes, we implement a two-stage search-and-refine approach to sequentially optimize topology and member sizes, which greatly reduces the search space and thus improves the training speed as well as the accuracy of the results. In this paper, we adopt UCT [Kocsis and Szepesvári, 2006], a variant of MCTS, as the search method for deriving various valid truss layouts in the search stage.

2.3 RL for Combinatorial Optimization

Recently, reinforcement learning (RL) has emerged as a powerful tool for solving challenging combinatorial optimization problems, such as virtual screening in drug design [Wu et al., 2019b; Deudon et al., 2018]. Various RL algorithms have been applied in this field, including value-based methods like Q-learning [Khalil et al., 2017], policy-based methods [Bello et al., 2016] and policy-gradient based methods [Kool et al., 2018]. One representative method in RL is Soft Actor-Critic (SAC) [Haarnoja et al., 2018], which has been used in robotics [Taylor et al., 2021], autonomous vehicles [Guan et al., 2022], game playing [Zhou et al., 2022] and many others. In this study, we also leverage the power of RL to address a combinatorial optimization problem, which is fine-grain truss refinement. Specifically, we employ SAC algorithm for this task, as it has a high sample efficiency and a strong ability to explore the solution space.

3 Preliminary

3.1 Problem Formulation

The truss layout design task is to minimize the mass of a truss layout by defining node locations, connections between the nodes, and cross-sectional areas of bars. Formally, a truss layout can be represented as a graph \(G = (V, E) \), where \(V \) is the set of nodes and \(E \) is the set of bars. A bar \(e \in E \) can be defined as a tuple \(e = (u, v, z) \), with nodes \(u, v \in V \), and cross-sectional area \(z \in \mathbb{R} \). The mass can be written as

\[
\text{Mass}(G) = \sum_{(u, v, z)\in E} z \times \|u - v\| \tag{1}
\]

In truss layout design, certain physical constraints need to be satisfied, to ensure displacement, stress, and buckle condition
are within capacity, while the length, area, and slenderness of the bars are within the design limit. Constraint details can be found in Appendix A.1. We consider both 2D and 3D settings in this paper. The only difference is the calculation of the bar’s cross-sectional area. In 2D settings, the cross-sectional area is only decided by the width of the bar. While in 3D settings, each bar is a hollow round tube, and the cross-sectional area is decided by the outer diameter and its thickness.

3.2 Upper Confidence Bounds Applied to Trees

Upper confidence bounds applied to trees (UCT) algorithm [Kocsis and Szepesvári, 2006] modifies Monte Carlo tree search (MCTS) method with Upper Confidence bounds, which searches for the best termination state \(s^* \) with the highest reward \(R_{UCT}(s^*) \) with a balance between exploration and exploitation [Gelly and Silver, 2007]. Classical UCT is applied to finite states and actions. For each non-termination state \(s \), UCT maintains an action-value function \(Q(s, a) \) during tree search, which is calculated as Eqn. (2):

\[
Q(s, a) = \beta W_{\text{mean}}(s, a) + (1 - \beta) W_{\text{best}}(s, a), \tag{2}
\]

where \(W_{\text{mean}} \) denotes the average reward of all the termination states in the subtree rooted at state \(s \), and \(W_{\text{best}} \) represents the highest reward in the subtree. \(\beta \) is a hyper-parameter to control the exploration preference between the average and the best reward [Kocsis and Szepesvári, 2006].

The policy of UCT \(\pi_{UCT}(s) \) selects the action that maximizes the upper confidence bound on the action value by

\[
Q_{UCT}(s, a) = Q(s, a) + C_a \sqrt{\frac{\log n(s)}{n(s, a)}}, \tag{3}
\]

\[
\pi_{UCT}(s) = \arg\max_a Q_{UCT}(s, a), \tag{4}
\]

where \(n(s) \) is the number of times that state \(s \) has been visited, and \(n(s, a) \) is the number of times that action \(a \) has been taken from state \(s \). Whenever a state \(s \) is visited, the counter \(n(s) \) and \(n(s, a) \) will be increased by 1.

When UCT begins, all the action values will be initialized to 0. In each UCT iteration, the search process starts from the root state \(s_0 \) and expands the search tree according to Eqn. (4). Simulation will be executed till a termination state is reached. Then the counters and the action values of visited state-action pairs will be updated accordingly. The process will be repeated within a given budget of search steps.

3.3 Reinforcement Learning

Reinforcement learning (RL) trains an agent to learn to make decisions by interacting with an environment and receiving feedback in the form of rewards. The agent’s goal is to maximize its total reward over time. To apply RL training, we model the problem as a Markov Decision Process (MDP). MDP is parameterized by \(\langle S, A, R, P, \gamma \rangle \), where \(S \) is the state space, \(A \) is the action space, \(R \) is the reward function, \(P(s' | s, a) \) is the transition probability from state \(s \) to state \(s' \) via action \(a \), and \(\gamma \) is the discount factor. The goal is to find a policy \(\pi_\theta \) parameterized by \(\theta \) that outputs an action \(\pi_\theta(s) \in A \) for each state \(s \) and maximizes the accumulative expected reward. The objective function is shown in Eqn. (5).

\[
J(\theta) = \mathbb{E}_{a_t \sim \pi_\theta(s_t)} \left[\sum_t \gamma^t R(s_t, a_t) \right], \tag{5}
\]

Soft Actor-Critic

Soft Actor-Critic (SAC) is an off-policy reinforcement learning algorithm that combines the actor-critic framework with an entropy term to encourage exploration. SAC optimizes

\[
J(\pi) = \mathbb{E}_\pi \left[\sum_t R(s_t, a_t) + \alpha \cdot H(\pi(s_t)) \right], \tag{6}
\]

where \(H(\pi) \) is the entropy of the policy at state \(s_t \), and \(\alpha \) is a temperature coefficient balancing exploration and exploitation. SAC maintains a data buffer \(D \) with all the transition samples and learns a soft Q-function \(Q_\psi(s, a) \) parameterized by \(\psi \). Assuming the policy is parameterized by \(\theta \), SAC optimizes the policy by the following objective

\[
J(\theta) = \mathbb{E}_{s_t \sim D} \left[\mathbb{E}_{a_t \sim \pi_\theta(s_t)} \left[\alpha \log \pi_\theta(a_t | s_t) - Q_\psi(s_t, a_t) \right] \right]. \tag{7}
\]

The temperature \(\alpha \) and the parameter \(\psi \) of the soft Q-network are also learned similarly.

4 AutoTruss: A Two-Stage Method

Truss layout design has a huge search space, which makes it extremely expensive for exhaustive search methods to achieve high performance. It is not feasible to apply end-to-end reinforcement learning (RL) methods either, since there are many restrictions on valid truss layouts, yielding highly sparse reward signals. Therefore, we proposed AutoTruss, a two-stage method consisting of a search stage and a refinement stage. In the search stage, AutoTruss uses a UCT search for diverse valid layouts. In the refinement stage, AutoTruss adopts deep RL to further improve the valid solutions. The overview of AutoTruss is shown in Fig. 1 with details described below.

4.1 Search Stage: UCT for Valid Designs

The purpose of the search stage is to find diverse valid truss layouts as a foundation for the refinement stage. We remark that diversity is important since similar topologies from the search stage will yield similar results from the refinement stage, while diverse inputs for the RL policy will improve the overall performances and robustness of AutoTruss.

We use UCT search to find valid truss layouts. We divide the generation process of a truss layout into three steps: node-adding step, bar-adding step, and cross-sectional area-changing step. The pipeline of UCT search is shown in Fig. 2. To be specific, given the initial truss layout \(G_0 = (V_0, E_0) \), our UCT search takes these three steps sequentially to produce a complete layout \(G_m = (V_m, E_m) \) from scratch. In the node-adding step, it adds new nodes to the layout until it reaches the maximum number of nodes, and then in the bar-adding step, bars with a random cross-sectional area will be added to the truss layout until it satisfies the structural constraints described in Sec. 3.1. Finally, we choose the appropriate cross-sectional area for each added bar in the cross-sectional area changing step. Following [Luo et al., 2022b], for each complete truss layout \(G_m = (V_m, E_m) \), the reward
is defined by
\[
R_{UCT}(G_m) = \begin{cases}
-1, & \text{invalid (structural);} \\
0, & \text{invalid (other);} \\
\kappa \sigma(G_m)^2, & \text{valid layout},
\end{cases}
\]
\[(8)\]
\(\kappa\) is a scaling parameter, which is typically chosen to bound the maximum reward below 10 for numerical stability.

UCT Search with Continuous Actions

A challenge when applying classical UCT to truss layout design is that the actions are all continuous. Therefore, for any intermediate truss layout \(G\), finding the optimal UCT action \(\pi_{UCT}(G)\) according to Equ. (4) becomes non-trivial. In AutoTruss, we approximate the best action by drawing random samples and choosing the optimal action from the samples:

\[
\hat{a}_{(i)} \sim \text{Uniform}(A) \quad \forall 1 \leq i \leq N,
\]
\[
\hat{\pi}_{UCT}(G) = \arg \max_{a=\hat{a}_{(1)}, \ldots, \hat{a}_{(N)}} Q_{UCT}(G, a).
\]
\[(9)\]

In our implementation, we choose \(N = 25\).

Another issue for continuous actions is to compute the action value \(Q_{UCT}(G, a)\) since there are infinitely many such values to compute leading to an unbounded search tree size. In our implementation, we constrained the expansion size for each intermediate truss layout \(G\) such that we at most expand \(O(\sqrt{n(G)})\) children to compute the exact values [Yee et al., 2016]. For other state-action pair \((G, a')\) without tree expansion, we approximate its \(Q(G, a')\) and \(n(G, a')\) via kernel regression [Nadaraya, 1964] based on the precise values of the expanded actions from \(G\). Suppose there are \(M\) expanded actions, i.e., \(\hat{a}_{(1)}, \ldots, \hat{a}_{(M)}\). The value \(Q(G, a')\) can be approximated by
\[
\hat{Q}(G, a') = \frac{\sum_{i=1}^{M} K(a', \hat{a}_{(i)}) n(G, \hat{a}_{(i)}) Q(G, \hat{a}_{(i)})}{\sum_{i=1}^{M} K(a', \hat{a}_{(i)}) n(G, \hat{a}_{(i)})}.
\]
\[(10)\]

The counts \(n(G, a')\) can be similarly approximated. Here \(K(., .)\) denotes a kernel function. We simply adopt the Gaussian kernel in our implementation.

Diverse Layouts

To get diverse valid truss layouts for the refinement stage, we not only need to save the best truss layout, but also some other suboptimal valid truss layouts. Note that two truss layouts \(G_1, G_2\) are topologically the same if and only if there exists a permutation \(\sigma\) over node indices such that
\[
\forall (u, v) \in G_1, (\sigma(u), \sigma(v)) \in G_2.
\]
\[(11)\]

It is time-consuming to enumerate all the permutations, we relax the criterion and only adopt the identity permutation in practice for topology checking. Finally, we store the top 5 lightest valid layouts for each topology and use \(\mathcal{G}\) to denote this set of diverse truss layouts we obtained.

4.2 Refinement Stage: RL for Adjustment

In the refinement stage, we adopt the SAC algorithm to refine those valid truss layouts \(\mathcal{G}\) generated in the search stage.

Action Space

The RL policy needs to perform two types of actions, i.e., adjust a node position and the cross-sectional areas of a specific bar in a truss layout. For node position refinement, when given a specific node to change, the policy outputs a multi-dimensional vector denoting the change of node coordinates. In the 2-dimensional case, the policy outputs \((\delta_x, \delta_y)\) indicating the change in the node’s position. Similarly, in the 3-dimensional case, the policy outputs \((\delta_x, \delta_y, \delta_z)\). Here all \(\delta_i < 0.5\) such that the adjustment will be confined to a small zone with dimension no more than 0.5m. This is to ensure that the majority of actions taken by RL will not violate the constraints. For cross-sectional area changes, when given a specific bar to adjust, the policy outputs a single real value for area change in the 2-dimensional case. In the 3-dimensional case, the policy outputs two continuous actions,
namely changing the outer diameter and changing the thickness of the bar. Note that not all cross-sectional areas are valid in the 3-dimensional case, so the actual values are rounded up to the minimum legal value during execution.

Reward Function

The design principle of the reward function is to (1) penalize invalid layouts and (2) promote lighter layouts. Suppose an action \(a \) is taken on an intermediate layout \(G \) leading to a refined layout \(G' \), the reward function is defined as

\[
R(G, a) = \begin{cases}
-50 & \text{invalid (structural)}; \\
-10 & \text{invalid (other)}; \\
\kappa & \text{valid}; \\
\frac{\text{Mass}(G')^2}{\text{Mass}(G)^2} - \kappa & \text{valid}.
\end{cases}
\] (12)

Network Architecture

The network architecture of the RL policy is shown in Fig. 3. Inspired by the transformer architecture [Vaswani et al., 2017], we adopt (1) a self-attention encoder to extract the spatial relationship between nodes and bars, and (2) an action decoder to output high-precision refinement actions for the node or bar to be operated on in the current iteration. The nodes are represented using coordinates, loads, and whether or not they are supported. The bars are represented as the coordinates of the two end nodes, with (a) the cross-sectional area of the bar in 2D, or with (b) the outer diameter and the thickness of the bar in 3D. All the nodes and bars are passed through an embedding layer and then sent to the self-attention encoder for spatial relationship extraction. The node-bar adjacency matrix is also fed into a self-attention encoder to reflect the topology of the truss layout. Then, the results of the embedding layer for the node or bar being operated in the current iteration will be sent to the action decoder together with its embedding of the self-attention encoder. Finally, the policy outputs both the Q values and the multi-dimensional action. Full details can be found in Appendix A.4.

Rollout Generation for RL Training

In our approach, we employ a probabilistic initialization strategy for the initial state of RL. In particular, we keep maintaining the top-5 diverse layouts in \(\mathcal{G} \). When each episode starts, we uniformly sample from \(\mathcal{G} \) with 50% probability. Otherwise, we alternatively start from the top-5 lightest truss layouts found during training without considering topology diversity. The termination criterion of one episode is that the maximum number of 20 actions are performed. We also early terminate an episode if the policy generates 5 invalid layouts within a single episode. In addition, in each RL step, we randomly choose a node or a bar from the current layout for the policy to adjust. More details can be found in Appendix A.5.

4.3 Overall Algorithm

We summarize the overall process of AutoTruss in Algorithm 1. The input to the algorithm is the initial truss layout \(G_0 = (V_0, E_0) \) as well as the constraints. \(V_0 \) represents the support nodes and \(E_0 \) represents the fixed bars. After applying the two stages, the algorithm finally outputs the lightest truss layout ever derived during the entire search process.

5 Experiments

We compare AutoTruss with 3 search-based baselines using both 2D and 3D test cases, where AutoTruss consistently produces the best truss designs. We also evaluate the effectiveness of each module in AutoTruss through ablation studies. We introduce test cases in Sec. 5.1, baselines in Sec. 5.2, and the experiment setup in Sec. 5.3. Main results and ablation studies are in Sec. 5.4 and Sec. 5.5 respectively.

5.1 Testbeds

2D Testbed

We choose two common 2D test cases in truss layout design [Fenton et al., 2015]: the 10-Bar Cantilever Truss (10-Bar) and the 17-Bar Cantilever Truss (17-Bar), as shown in Fig. 4. Both are common test cases in the field of structure generation and optimization [Assimi et al., 2017; Deb and Gulati, 2001; Tejani et al., 2018; Fenton et al., 2015]. There are 2 load cases in the 10-Bar case. The buckle constraint and the slenderness constraint are not applied to the 10-Bar case. In the 17-Bar case, all the constraints except the slenderness constraint are taken into consideration. The detailed settings are listed in Appendix A.1.
We consider 3 competitors: AlphaTruss [Luo et al., 2022b], KR-UCT [Luo et al., 2022a], and SEOIGE [Fenton et al., 2015]. All the baseline methods can be applied to the 2D testbed, but only KR-UCT can be applied to the 3D testbed. Therefore, we compare 2D results with all three baselines and compare 3D results only with KR-UCT. We utilized the results of the baselines as reported in their original papers, as the test cases and evaluation methods used in those studies were consistent with those employed in our own research. The details of baselines are listed in Appendix A.2.

5.2 Baselines

We consider 3 competitors: AlphaTruss [Luo et al., 2022b], KR-UCT [Luo et al., 2022a], and SEOIGE [Fenton et al., 2015]. All the baseline methods can be applied to the 2D testbed, but only KR-UCT can be applied to the 3D testbed. Therefore, we compare 2D results with all three baselines and compare 3D results only with KR-UCT. We utilized the results of the baselines as reported in their original papers, as the test cases and evaluation methods used in those studies were consistent with those employed in our own research. The details of baselines are listed in Appendix A.2.

5.3 Experiment Setup

KR-UCT and SEOIGE use single-stage search while we use a two-stage search scheme. We balance the iterations in the search stage, and the environment steps in the refinement stage to keep a fair comparison. More specifically, we run 2×6 iterations in the search stage, which is half the number of iterations in KR-UCT, and 1.5×5 environment steps for RL training, so that the running time of the refinement stage is similar to the search stage with an RTX 3070 GPU. We remark that AutoTruss consumes substantially fewer trials (i.e., search iterations + RL steps) compared with baselines, and The details can be found in Appendix A.8. We run 3 seeds for each test case and report the best numbers with the mean numbers and standard deviations.

5.4 Main Results

2D Results

The mass of the solutions derived by AutoTruss and baselines are presented in Tab. 1, where p denotes the number of nodes in the generated truss layouts. N/A denotes that the original paper does not report the number. AutoTruss outperforms baselines in all cases, showing the capacity to generate lighter truss layouts under various settings.

<table>
<thead>
<tr>
<th>Cases</th>
<th>Settings</th>
<th>AlphaTruss</th>
<th>KR-UCT</th>
<th>SEOIGE</th>
<th>AutoTruss</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-Bar</td>
<td>Load I, p=6</td>
<td>2150</td>
<td>2154</td>
<td>2218</td>
<td>2114(2128, 17.6)</td>
</tr>
<tr>
<td></td>
<td>Load II, p=7</td>
<td>1616</td>
<td>N/A</td>
<td>2098</td>
<td>1337(1410, 61.2)</td>
</tr>
<tr>
<td>17-Bar</td>
<td>p=6</td>
<td>1408</td>
<td>1463</td>
<td>2582</td>
<td>1378(1398, 22.2)</td>
</tr>
</tbody>
</table>

Table 1: Results of 10-Bar and 17-Bar truss layout design in 2D testbed. p is the number of nodes in the generated truss layouts. N/A denotes that the original paper does not report the number. AutoTruss outperforms baselines in all cases, showing the capacity to generate lighter truss layouts under various settings.

3D Results

Tab. 2 shows a comparison of AutoTruss and KR-UCT in the Cantilever Sundial truss layout design of the 3D testbed. Our method consistently outperforms KR-UCT by at least 25% under all settings. This highlights the effectiveness of AutoTruss in designing lightweight truss layouts within a larger search space. It is noteworthy that 3D truss design poses a greater challenge than 2D truss design, as the search space is substantially enlarged. Our approach exhibits a more significant improvement in the 3D case than the 2D counterpart.

The visualization comparison is shown in Fig. 7. The truss layouts derived by AutoTruss show a more elongated appearance compared with those derived by KR-UCT.
Table 2: Results of Cantilever Sundial truss layout design in 3D testbed. p is the number of nodes in the generated truss layouts. N/A denotes the original paper does not report the number. AutoTruss outperforms KR-UCT by 25.1%, showing the ability to generate complex 3D truss layouts.

<table>
<thead>
<tr>
<th>Settings</th>
<th>KR-UCT</th>
<th>AutoTruss</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 7$</td>
<td>N/A</td>
<td>30.6(31.3, 0.63)</td>
</tr>
<tr>
<td>$p = 8$</td>
<td>38.7</td>
<td>29.0, 30.4, 1.01</td>
</tr>
<tr>
<td>$p = 9$</td>
<td>37.2</td>
<td>28.8, 30.5, 1.32</td>
</tr>
</tbody>
</table>

Table 3: Ablation studies on the usage of diverse truss layouts. AutoTruss w.o. Diverse directly uses the lightest truss layouts derived in the search stage without different topologies. AutoTruss achieves better performance under all settings.

<table>
<thead>
<tr>
<th>Settings</th>
<th>AutoTruss w.o. Diverse</th>
<th>AutoTruss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load I, $p = 6$</td>
<td>2149.60(1.90)</td>
<td>2128.73(17.83)</td>
</tr>
<tr>
<td>Load II, $p = 7$</td>
<td>1419.67(18.45)</td>
<td>1410.73(61.17)</td>
</tr>
</tbody>
</table>

Figure 7: Visualization of truss layouts derived by AutoTruss and KR-UCT in 3D testbed. p is the number of nodes in the generated truss layouts. The truss layouts derived by AutoTruss are more slender and streamlined than those derived by KR-UCT.

5.5 Ablation Study

In this section, we analyze the effectiveness of the two-stage scheme, the usage of diverse truss layouts in the search stage, as well as network architecture, all based on the 10-Bar truss layout design cases of 2D testbed through ablation studies. Results are reported as “mean (standard deviation)”.

Search-Stage-Only v.s. Two-Stage

We present truss layouts only derived from the search stage and refined by the refinement stage separately in Fig. 8. In all cases, the refinement stage substantially reduces the total mass of the truss layout by 28% on average, demonstrating the importance of the refinement stage in AutoTruss for further performance improvement.

Usage of Diverse Truss Layouts

To investigate the advantages of the diverse truss layouts derived in the search stage, we use the lightest truss layouts derived in the search stage without different topologies, named AutoTruss w.o. Diverse. The results are presented in Tab. 3. AutoTruss outperforms AutoTruss w.o. Diverse by an average of 3% in all cases, which demonstrates the effectiveness of introducing diverse truss layouts.

Network Architecture

Transformer and GNN architectures are commonly employed to handle graphical inputs. The comparison between GNN-based Policy and AutoTruss is presented in Tab. 4. We utilized CGConv [Fey and Lenssen, 2019] as GNN module, which has been demonstrated to exhibit good performance in material property prediction tasks [Xie and Grossman, 2018]. The node positions, loads, and support information are embedded as nodes, and the cross-sectional area of each bar is recorded as an edge property. After GNN, we extract the embedding of the action node and then concatenate it with the action embedding for the final action. Empirically, we observe that a Transformer-based policy, as we used in AutoTruss, performs slightly better than a GNN-based Policy.

Table 4: Ablation studies on the network architecture. AutoTruss, which adopts Transformer-based architecture, shows slightly better performance than GNN-based Policy.

<table>
<thead>
<tr>
<th>Settings</th>
<th>GNN-based Policy</th>
<th>AutoTruss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load I, $p = 6$</td>
<td>2151.64(12.10)</td>
<td>2128.73(17.83)</td>
</tr>
<tr>
<td>Load II, $p = 7$</td>
<td>1412.93(99.87)</td>
<td>1410.73(61.17)</td>
</tr>
</tbody>
</table>

6 Conclusion

We propose a two-stage method AutoTruss that can automatically design truss layouts under various constraints. We use UCT search to find diverse valid truss layouts in the search stage and then use deep RL policy to refine the truss layouts derived in the search stage. AutoTruss outperforms the baselines by 6.8% on 2D testbed and 25.1% on 3D testbed. AutoTruss may perform poorly when generating large-scale spatial structures, and combining basic structural elements in the search stage could accelerate the search speed. We leave this as our future work.

Acknowledgements

The authors would like to acknowledge the financial support provided by the 2030 Innovation Megaprojects of China (Programme on New Generation Artificial Intelligence) Grant No. 2021AAA0150000 and Research on computer-generated intelligent design of buildings Grant No. SYXF0120020110.
Contribution Statement
Authors Weihua Du and Jinglun Zhao contributed equally to this work and should be considered co-first authors.

References

[Li et al., 2021] Yangyang Li, Yipeng Ji, Shaoning Li, Shulong He, Yinhao Cao, Yifeng Liu, Hong Liu, Xiong Li, Jun Shi, and Yangchao Yang. Relevance-aware anomalous users detection in social network via graph neural network. In 2021 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

A Appendix

A.1 Detailed Constraints

For any truss layout \(G = (V, E) \), we have 8 constraints in total to check whether the truss layout is valid.

We define some parameters first: \(\Omega \) is the design domain, \(z_i \) is the cross-sectional area of \(i \)-th bar, \(l_i \) is the length of \(i \)-th bar, \(\sigma_i \) is the stress of \(i \)-th bar (\(\sigma_i > 0 \) means the bar is in tension and \(\sigma_i < 0 \) means in compression), \(\delta_i \) is the displacement of \(i \)-th nodes from its original position after loaded, \(\sigma_i^t = \max(0, -\sigma_i) \) is the compression part of stress, \(\delta = \pi^2 EI z_i l_i^2 \) refers to the buckling limit of \(i \)-th bar (\(E \) is Young’s modulus, \(I_i \) is the moment of inertia of \(i \)-th bar), \(\lambda_i = l_i / \sqrt{EI} / z_i \) is the slenderness ratio of \(i \)-th bar.

The 8 constraints \(g_0, \ldots, g_8 \) are listed as following:

- **Geometry stability**\((g_0)\): the truss layout must pass three basic checks: (a) no extra degree of freedom, (b) stiffness matrix \(> 0 \), (c) no intersection between bars;
- **Design domain**\((g_1)\): each node and bar should be in the design domain \(\Omega \);
- **Cross-sectional area**\((g_2)\): each bar’s cross-sectional area \(z_i \) should be within \([z_{\min}, z_{\max}]\);
- **Stress constraint**\((g_3)\): each bar’s strength \(\sigma_i \) should be within \([\sigma_{\min}, \sigma_{\max}]\);
- **Displacement**\((g_4)\): each node’s displacement \(\delta_i \) should be within a small range in each direction. I.e., \(\|\delta_i\|_x \leq \delta_{\max} \);
- **Stability**\((g_5)\): each bar’s compression part of stress \(\sigma_i^t \) should be less than its buckle limit \(b_i \).
- **Stiffness**\((g_6)\): each bar’s slenderness ratio \(\lambda_i \) should be less than \(\lambda_{\max} \);
- **Bar length**\((g_7)\): each bar’s length \(l_i \) should be within \([l_{\min}, l_{\max}]\).

Notice that not all the constraints need to be satisfied in the test cases, and some test cases take the self-weight into consideration. We specify the constraint set in each test case in A.2.

A.2 Detailed Settings of Testbeds

10-Bar Cantilever Truss

The design domain of the 10-Bar Cantilever Truss is shown in Fig. 4. The 10-Bar Truss test case has 6 fixed nodes. The left two nodes \((a, b)\) are support nodes, and the right four nodes \((c, d, e, f)\) may take some loads. The test case has two load cases. The node numbers \(a, b, c, d, e, f \) are support nodes, and node \((i)\) is support node. Node \((i)\) has no load and is not a support node, it will be removed from the initial truss layout. Constraints \(\{g_0, g_1, g_2, g_3, g_4, g_5\}\) need to be satisfied in the 10-Bar test case. The node numbers \(p \) of load case I and II are 6 and 7, respectively. This test case does not take the self-weight of bars into consideration.

Detailed information on fixed nodes is listed in Tab. 5. Material properties and constraint parameter settings are listed in Tab. 6.

17-Bar Cantilever Truss

The design domain of the 17-Bar Cantilever Truss is shown in Fig. 4. The 17-Bar Truss test case has 3 fixed nodes. The left two nodes \((a, b)\) are support nodes, and node \((i)\) takes some loads. Constraints \(\{g_0, g_1, g_2, g_3, g_4, g_5\}\) need to be satisfied in the 17-Bar test case. The node number \(p \) is 6. This test case does not take the self-weight of bars into consideration.

Detailed information on fixed nodes is listed in Tab. 7. Material properties and constraint parameter settings are listed in Tab. 8.

3D Cantilever Srialul

The design domain of the 3D Cantilever Srialul test case is shown in Fig. 5. The design domain only represents node locations and there is no mandatory geometric boundary for newly added nodes and bars. There are four fixed nodes in
There are 180 kinds of tension bars and compression bars (Tab. 10). Note that the slenderness ratio limit is different for each test case.

Table 9: Each fixed node information of the 3D Sundial test case.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Domain (S)</td>
<td>No mandatory geometric boundary</td>
</tr>
<tr>
<td>Young’s modulus (E)</td>
<td>193 GPa</td>
</tr>
<tr>
<td>Density ((\rho))</td>
<td>8000 kg/m(^2) (0.268 lb/in(^3))</td>
</tr>
<tr>
<td>Strength range</td>
<td>([-123, 123]) MPa</td>
</tr>
<tr>
<td>Max node displacement ((h_{max}))</td>
<td>2 mm</td>
</tr>
<tr>
<td>Slenderness ratio ((\lambda_{max}))</td>
<td>220(tension bar) and 180(compression bar)</td>
</tr>
<tr>
<td>Bar length range ((l_{min}, l_{max}))</td>
<td>[0.03, 5] m</td>
</tr>
<tr>
<td>Bar area range (z)</td>
<td>Cross-sections in GB50018-2002</td>
</tr>
<tr>
<td>Consider self-weight (f_{self})</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 10: Detailed constant information of the 3D Sundial test case.

Table 10: Detailed constant information of the 3D Sundial test case.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Domain (S)</td>
<td>No mandatory geometric boundary</td>
</tr>
<tr>
<td>Young’s modulus (E)</td>
<td>193 GPa</td>
</tr>
<tr>
<td>Density ((\rho))</td>
<td>8000 kg/m(^2) (0.268 lb/in(^3))</td>
</tr>
<tr>
<td>Strength range</td>
<td>([-123, 123]) MPa</td>
</tr>
<tr>
<td>Max node displacement ((h_{max}))</td>
<td>2 mm</td>
</tr>
<tr>
<td>Slenderness ratio ((\lambda_{max}))</td>
<td>220(tension bar) and 180(compression bar)</td>
</tr>
<tr>
<td>Bar length range ((l_{min}, l_{max}))</td>
<td>[0.03, 5] m</td>
</tr>
<tr>
<td>Bar area range (z)</td>
<td>Cross-sections in GB50018-2002</td>
</tr>
<tr>
<td>Consider self-weight (f_{self})</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The design domain, among which nodes \((1, 2, 3)\) are support nodes, and node \((4)\) is the sundial tip with load 50 N. Constraints \([g_0, g_1, g_2, g_3, g_4, g_5, g_7]\) need to be satisfied in the Sundial test case. The node number \(p\) is 7 or 8 or 9. This test case takes the self-weight of bars into consideration.

Detailed information on fixed nodes is listed in Tab. 9. Material properties and constraint parameters are listed in Tab. 10. Note that the slenderness ratio limit is different for tension bars and compression bars (220 for tension bars and 180 for compression bars).

The cross-section of the bars used in this section is the section of cold-formed thin-wall welded round steel tube (GB50018-2002). There are 61 kinds of cross-sections in total and each area \(z\) of the cross-sections is defined by diameter \(d\) and thickness \(t\): \(z = \pi(d^2/4 + (d - 2t)^2)/4\), with parameters ranging from \(d\) 25 t 1.5 to \(d\) 245 t 4.0.

A.3 Detailed Baseline Description

AlphaTruss

AlphaTruss [Luo et al., 2022b] is a two-stage search method. The first stage is searching in discrete space by UCT search. Similar to AutoTruss, it searches for node position, node connection, and cross-sectional area of bars sequentially. The second stage is used to refine the best truss layouts generated in the first stage by discretized UCT search, too. In detail, suppose \(w\) is the step size of the discretization in the first stage and \(p\) is the search result of a node’s position or a bar’s cross-sectional area. The search domain will be restricted to \([p - w/2, p + w/2]\).

KR-UCT

KR-UCT [Luo et al., 2022a] is a one-stage search method, which uses UCT search directly. To handle the continuous search space, it applies the kernel method. Similarly to AlphaTruss, it searches node position, node connection, and cross-sectional area of bars sequentially. To the best of our knowledge, it is the first search method that can apply to 3D settings without any predefined structure.

A.4 Network Architecture

All in all, the network architecture of the RL policy for AutoTruss has four parts: node/bar/action id/action embedding, self-attention encoder, action decoder, and action/value head.

Node/Bar/Action id/Action Embedding

For a truss layout \(G = (V, E)\), AutoTruss first embeds each node \(v_i\) and bar \(e_i\) by MLPs. In detail, a node \(v_i\) is represented by \([\text{position}, \text{support}, \text{load condition}]\) and put into a two-layer MLP with hidden dim 128 and output dim 256. Similarly, a bar \(e_i\) is represented by \([\text{node position 1}, \text{node position 2}, \text{cross-sectional area}]\) and put into a two-layer MLP with the same hidden dim and output dim as node embedding. For the action id and action, we also use two two-layer MLPs with the same hidden dim and output dim. Let the embedded nodes, bars, action id, and action be \(v_1, ..., v_k, e_1, ..., e_{k+1}, id, \hat{a}\), respectively.

Self-Attention Encoder

To get the connection between nodes, bars, and action id of a truss layout, we use a self-attention encoder to extract information. First, we concatenate the embedding of nodes and bars as a sequence \([v_1, ..., v_k, e_1, ..., e_{k+1}]\), and then put the sequence into the self-attention encoder. The self-attention encoder has hidden dim 256 and 6 layers.

Action Decoder

To get the predicted action \(a\) and the Q value \(Q(s, a)\). Action id \(id\) and action \(\hat{a}\) are put into the action decoder, which is a 6 layer decoder with hidden dim 256. Let the hidden state of action id and action generated by action decoder be \(h_{id}\) and \(h_{\hat{a}}\), respectively.

Action/Value Head

We use the hidden state of action id \(h_{id}\) and action \(h_{\hat{a}}\) to generate action \(a\) and predict Q-value \(Q(s, a)\), respectively. To generate action \(a\), we put \(h_{id}\) into a three-layer MLP with hidden dims 256, 512. Similarly, to predict Q-value \(Q(s, a)\), we put \(h_{\hat{a}}\) into another MLP with the same hidden dims.

A.5 Hyperparameters

There are 6 hyperparameters in our algorithm, namely the first exploration parameter \(\beta\) in Equ. (2), the second exploration parameter \(\gamma\) in Equ. (3), discount factor \(\gamma\) in Equ. (5), temperature parameter \(\alpha\) in Equ. (6), and the learning rate of policy and Q-value function \(\alpha_{\text{policy}}\) and \(\alpha_{\text{Qf}}\). The values of the hyperparameters are chosen through trial and error, with their values listed in Tab. 11.

A.6 Data of Generated Truss Layouts

Detailed data of the generated truss layouts, including node coordinates and cross-sectional areas of the bars are provided in tables. Tab. 12 shows the details for both load case I and
Table 11: Hyperparameters used in UCT, RL, and SAC.

<table>
<thead>
<tr>
<th>Hyperparameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration parameter 1</td>
<td>0.3</td>
</tr>
<tr>
<td>Exploration parameter 2</td>
<td>30</td>
</tr>
<tr>
<td>Discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>Initial temperature</td>
<td>1.0</td>
</tr>
<tr>
<td>Policy learning rate</td>
<td>0.0003</td>
</tr>
<tr>
<td>Q-value learning rate</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Table 12: Detailed data of the generated truss in 2D 10-bar.

<table>
<thead>
<tr>
<th>Node Label</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coord. (mm)</td>
<td>6115,3851</td>
<td>11508,6647</td>
<td>17380,5062</td>
</tr>
</tbody>
</table>

Table 13: Detailed data of the generated truss in 2D 17-bar.

<table>
<thead>
<tr>
<th>Node Label</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coord. (mm)</td>
<td>3963,0</td>
<td>6395,0</td>
<td>6462,2528</td>
</tr>
<tr>
<td>Bar Label</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Area (cm²)</td>
<td>132</td>
<td>38.6</td>
<td>47.6</td>
</tr>
</tbody>
</table>

Table 14: Node coordinates detail of the generated truss in 3D.

<table>
<thead>
<tr>
<th>Bar Connection, Outer Diameter(mm) (Thickness=1.5 mm, if not stated otherwise)</th>
<th>7-Point</th>
<th>8-Point</th>
<th>9-Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5: 30.0, 3-5: 25.0</td>
<td>4-9: 40.0, 1-4: 40.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-6: 30.0, 3-6: 25.0</td>
<td>4-6: 40.0, 1-6: 40.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-7: 30.0, 2-7: 25.0</td>
<td>3-7: 25.0, 1-7: 25.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-8: 30.0, 2-8: 25.0</td>
<td>3-8: 25.0, 1-8: 25.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-9: 30.0, 3-9: 25.0</td>
<td>3-9: 25.0, 3-9: 25.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 15: Bar connections, outer diameter and thickness of the generated truss in 3D.

Table 16: Ablation studies on whether the environment allows invalid truss layouts.

<table>
<thead>
<tr>
<th>Settings</th>
<th>AutoTruss w.o. Invalid</th>
<th>AutoTruss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load I, p = 6</td>
<td>2136.01 (14.91)</td>
<td>2128.73 (17.83)</td>
</tr>
<tr>
<td>Load II, p = 7</td>
<td>1631.41 (128.69)</td>
<td>1410.73 (61.17)</td>
</tr>
</tbody>
</table>

A.7 Ablation Study on Environment

To check the design of the RL environment, we conduct an ablation study on whether the RL environment allows invalid truss layouts. AutoTruss w.o. Invalid does not allow any invalid truss layouts to occur in the rollout. AutoTruss achieves better performance under all settings.

in less than 5 steps within a single episode. Another environment design does not allow the policy generates any invalid layouts, and it will stop the episode immediately if any invalid layout occurs, named AutoTruss w.o. Invalid. We run the ablation study on the 10-Bar test case for 3 seeds, and the comparison is shown in Tab. 16. Data is reported as "mean(standard deviation)". Allowing the occurrence of invalid truss layouts achieves better results since it encourages the RL policy to explore more.

A.8 Comparison of Running Time

The parameters for the number of episodes used in the UCT search and the number of environment steps used in the reinforcement learning were chosen to ensure a fair comparison to other baselines, by keeping a similar time cost.

Our first baseline, KR-UCT, uses a single stage of searching with an upper limit of 4 million iterations when running the 3d kr-sundial test case. In contrast, since our algorithm has two stages, we set the upper limit of the search stage to 2 million iterations to keep the search time half that of KR-UCT. 150,000 environment steps ensure that the refinement stage takes the same time as the search stage.

The second baseline, AlphaTruss, also has two stages, and its search stage takes approximately half the number of itera-
tions as KR-UCT. Therefore, the computation for our search stage is consistent with AlphaTruss.

We report the number from their paper for the third baseline SEOIGE since its codebase is not public.