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Abstract
Truss layout design, namely finding a lightweight
truss layout satisfying all the physical constraints,
is a fundamental problem in the building industry.
Generating the optimal layout is a challenging com-
binatorial optimization problem, which can be ex-
tremely expensive to solve by exhaustive search.
Directly applying end-to-end reinforcement learn-
ing (RL) methods to truss layout design is infea-
sible either, since only a tiny portion of the en-
tire layout space is valid under the physical con-
straints, leading to particularly sparse rewards for
RL training. In this paper, we develop AutoTruss,
a two-stage framework to efficiently generate both
lightweight and valid truss layouts. AutoTruss first
adopts Monte Carlo tree search to discover a di-
verse collection of valid layouts. Then RL is ap-
plied to iteratively refine the valid solutions. We
conduct experiments and ablation studies in popu-
lar truss layout design test cases in both 2D and 3D
settings. AutoTruss outperforms the best-reported
layouts by 25.1% in the most challenging 3D test
cases, resulting in the first effective deep-RL-based
approach in the truss layout design literature.

1 Introduction
Truss layout design and optimization is a crucial and funda-
mental research topic in the building industry, as truss layouts
can be found in a wide range of structures, including bridges,
towers, roofs, floors [Stolpe, 2016; Alhaddad et al., 2020]
and even in aerospace and automotive sectors [Wang et al.,
2019]. As a basic component in building structures, a truss
can support heavy loads and span long distances with a small
amount of construction material. Efficient truss layout design
can lead to significant cost savings and can also improve the
physical performance and safety of the structure.

However, truss layout design is an NP-hard combinato-
rial optimization problem, which involves the optimization
of node locations, topology between nodes, and the cross-
sectional areas of connecting bars [Fenton et al., 2015]. The
possible search space for truss layouts is huge, nonlinear,
and non-convex. There are also a number of constraints that

must be satisfied, including material strength, displacement
allowance, and stability of structural members [Luo et al.,
2022b]. Traditionally, engineers design and optimize truss
layouts using a combination of mathematical analysis and
physical testing based on domain knowledge. They ana-
lyze the structural behavior and iteratively adjust the size and
shape based on initial sketches [Dorn, 1964]. These meth-
ods rely heavily on subjective human expertise, resulting in
a cumbersome and restrictive design process. An automated
design approach is crucial for achieving greater efficiency and
flexibility in the design process.

Previous studies have attempted to automate the design
of truss layouts using heuristic algorithms, such as genetic
algorithms [Permyakov et al., 2006], particle swarm opti-
mization [Luh and Lin, 2011], simulated annealing [Lam-
berti, 2008], and differential evolution[Ho-Huu et al., 2016].
However, the size and the complexity of the search space im-
peded the achievement of optimal results. Note that the entire
search space, including node positions, is continuous, and a
tiny position change may drastically influence the physical
performance of the entire truss layout. So, directly apply-
ing search-based methods can be particularly expensive. A
low-resolution discretization over the search space may eas-
ily miss out on the optimal positions and lead to low-quality
solutions [Luo et al., 2022b].

Reinforcement learning (RL) methods have achieved
strong results in solving combinatorial optimization problems
[Mazyavkina et al., 2021], such as the Traveling Salesman
Problem (TSP) [Bello et al., 2016] and drug design [Jeon and
Kim, 2020; Yoshimori et al., 2020]. These problems require
the solver to find the optimal combination of a finite set of
choices to maximize a certain objective function. Truss lay-
out design is a similar combinatorial problem but it has the
following differences. Unlike TSP problems where any order
of the cities is feasible, truss layout design and optimization
have tight physical constraints, making most truss layouts
generated from random actions invalid. This in turn makes
reward signals sparse for RL training. The objective function
is also more complex than that in TSP, since there are more
performance indices, like capacity and stability, beyond total
mass. The settings of truss layout design are more similar to
virtual screening in drug design, namely identifying potential
drug candidates from large libraries of compounds [Yoshi-
mori et al., 2020]. They both have complex constraints and



performance indices. However, in drug design, there exists a
large amount of data that can be used for pre-training [Jeon
and Kim, 2020], whereas in truss layout design, little real-
world data are available. These facts make it difficult to di-
rectly apply end-to-end RL training to truss layout design.

To sum up, the heuristic search methods can generate valid
truss layouts, but with sub-optimal quality [Luo et al., 2022b].
On the other hand, RL can produce fine-grained refinement
of truss layouts but suffer from sparse rewards. Therefore,
we combine them as a two-stage search-and-refine algorithm
named AutoTruss. In the search stage, we run a search-based
method, Upper Confidence bounds applied to Trees (UCT), to
derive diverse truss layouts under all physical constraints. In
the refinement stage, we adopt the SAC algorithm to train an
RL policy for refining the valid truss layouts from the search
stage. We conduct experiments in both 2D and 3D cases, and
results show that AutoTruss improved the SOTA performance
by 6.8% on average in 2D test cases and as much as 25.1% in
the more challenging 3D test cases.

2 Related Work
2.1 Truss Representation
A concise representation of a truss layout is fundamental for
the truss layout design, which should capture both geome-
try and load conditions. There are mainly two types of rep-
resentations: voxel-based [Li et al., 2022], and graph-based
[Stolpe, 2016]. We adopt the graph-based method for its ac-
curacy and flexibility. The voxel-based methods divide the
design space into small, three-dimensional units called vox-
els, each assigned a value representing material density [Li et
al., 2022; Klemmt, 2023; Du et al., 2018]. These methods
cope well with boundary conditions, but cannot accommo-
date continuous variations in truss topology and is prone to
discretization errors.

On the other hand, graph-based methods represent the
truss layout as a graph, consisting of coordinates of nodes,
bars connecting the nodes, and member area sizes [Fenton
et al., 2015; Stolpe, 2016; Lieu, 2022], but often simplify-
ing it to follow certain grids or only connecting neighbor-
ing nodes. Based on a graph-based approach, our method
adopts a continuous additive method, allowing for greater
flexibility in node connection and truss layout by adding
nodes and connections freely from scratch. Furthermore,
Graph Neural Network (GNN) [Scarselli et al., 2008] is
well-suited for processing graph-structured data and com-
plex relationships between elements, thus it is widely used
in various real-world applications such as social networks [Li
et al., 2021], chemistry [Fung et al., 2021; Yang et al.,
2021], and recommendation systems [Guo and Wang, 2020;
Wu et al., 2019a].

2.2 Truss Design and Optimization
There have been various methods for truss layout design
and optimization over the years. Traditionally, engineers de-
signed truss layouts based on sketches by experience and re-
fined them with analytical math tools [Dorn, 1964]. This em-
pirical method is time-consuming and far from accurate. With
the advancement of technology, computer algorithms based

on finite element analysis (FEA) have been adopted for faster
and more efficient design [Mai et al., 2021]. These algorithms
can be divided into two categories: gradient-based and non-
gradient-based. Gradient-based algorithms, such as steepest
descent, are efficient in converging to a solution but can be
complex to implement mathematically and often produces lo-
cal solutions [Banh et al., 2021; Nguyen and Banh, 2018;
Banh and Lee, 2019; Lieu, 2022]. On the other hand, non-
gradient-based algorithms, such as differential evolution (DE)
and genetic algorithms (GA), do not require derivative cal-
culations and are more flexible and robust in the presence
of multiple local optima. As a relatively new entrant in
this category, Monte Carlo Tree Search (MCTS) [Coulom,
2007] has shown to be highly effective in large search spaces
with the success of AlphaGo [Silver et al., 2016], as it
balances exploration and exploitation [Luo et al., 2022b;
Luo et al., 2022a]. Different from previous works which si-
multaneously optimize truss topology and member sizes, we
implement a two-stage search-and-refine approach to sequen-
tially optimize topology and member sizes, which greatly re-
duces the search space and thus improves the training speed
as well as the accuracy of the results. In this paper, we adopt
UCT [Kocsis and Szepesvári, 2006], a variant of MCTS, as
the search method for deriving various valid truss layouts in
the search stage.

2.3 RL for Combinatorial Optimization
Recently, reinforcement learning (RL) has emerged as a pow-
erful tool for solving challenging combinatorial optimization
problems, such as virtual screening in drug design [Wu et al.,
2019b; Deudon et al., 2018]. Various RL algorithms have
been applied in this field, including value-based methods like
Q-learning [Khalil et al., 2017], policy-based methods [Bello
et al., 2016] and policy-gradient based methods [Kool et
al., 2018]. One representative method in RL is Soft Actor-
Critic (SAC) [Haarnoja et al., 2018], which has been used in
robotics [Taylor et al., 2021], autonomous vehicles [Guan et
al., 2022], game playing [Zhou et al., 2022] and many others.
In this study, we also leverage the power of RL to address a
combinatorial optimization problem, which is fine-grain truss
refinement. Specifically, we employ SAC algorithm for this
task, as it has a high sample efficiency and a strong ability to
explore the solution space.

3 Preliminary
3.1 Problem Formulation
The truss layout design task is to minimize the mass of a truss
layout by defining node locations, connections between the
nodes, and cross-sectional areas of bars. Formally, a truss
layout can be represented as a graph G “ pV,Eq, where V
is the set of nodes and E is the set of bars. A bar e P E can
be defined as a tuple e “ pu, v, zq, with nodes u, v P V , and
cross-sectional area z P R. The mass can be written as

Mass pGq “
ÿ

pu,v,zqPE

z ˆ }u´ v} (1)

In truss layout design, certain physical constraints need to be
satisfied, to ensure displacement, stress, and buckle condition



are within capacity, while the length, area, and slenderness of
the bars are within the design limit. Constraint details can be
found in Appendix A.1. We consider both 2D and 3D settings
in this paper. The only difference is the calculation of the
bar’s cross-sectional area. In 2D settings, the cross-sectional
area is only decided by the width of the bar. While in 3D set-
tings, each bar is a hollow round tube, and the cross-sectional
area is decided by the outer diameter and its thickness.

3.2 Upper Confidence Bounds Applied to Trees
Upper confidence bounds applied to trees (UCT) algo-
rithm [Kocsis and Szepesvári, 2006] modifies Monte Carlo
tree search (MCTS) method with Upper Confidence bounds,
which searches for the best termination state s˚ with the high-
est rewardRUCT ps˚q with a balance between exploration and
exploitation [Gelly and Silver, 2007]. Classical UCT is ap-
plied to finite states and actions. For each non-termination
state s, UCT maintains an action-value function Qps, aq dur-
ing tree search, which is calculated as Equ. (2):

Qps, aq “ βWmeanps, aq ` p1 ´ βqWbestps, aq, (2)
where Wmean denotes the average reward of all the termina-
tion states in the subtree rooted at state s, andWbest represents
the highest reward in the subtree. β is a hyper-parameter to
control the exploration preference between the average and
the best reward [Kocsis and Szepesvári, 2006].

The policy of UCT πUCT psq selects the action that maxi-
mizes the upper confidence bound on the action value by

QUCT ps, aq “ Qps, aq ` c

d

log npsq

nps, aq
; (3)

πUCT psq “ argmaxaQUCT ps, aq, (4)
where npsq is the number of times that state s has been vis-
ited, and nps, aq is the number of times that action a has been
taken from state s. Whenever a state s is visited, the counter
npsq and nps, aq will be increased by 1.

When UCT begins, all the action values will be initialized
to 0. In each UCT iteration, the search process starts from
the root state s0 and expands the search tree according to
Equ. (4). Simulation will be executed till a termination state
is reached. Then the counters and the action values of visited
state-action pairs will be updated accordingly. The process
will be repeated within a given budget of search steps.

3.3 Reinforcement Learning
Reinforcement learning (RL) trains an agent to learn to make
decisions by interacting with an environment and receiving
feedback in the form of rewards. The agent’s goal is to max-
imize its total reward over time. To apply RL training, we
model the problem as a Markov Decision Process (MDP).
MDP is parameterized by xS,A,R, P, γy, where S is the
state space, A is the action space, R is the reward function,
P ps1 | s, aq is the transition probability from state s to state
s1 via action a, and γ is the discount factor. The goal is to
find a policy πθ parameterized by θ that outputs an action
πθpsq P A for each state s and maximizes the accumulative
expected reward. The objective function is shown in Equ. (5).

Jpθq “ Eat„πθpstq

«

ÿ

t

γtR pst, atq

ff

(5)

Soft Actor-Critic
Soft Actor-Critic (SAC) is an off-policy reinforcement learn-
ing algorithm that combines the actor-critic framework with
an entropy term to encourage exploration. SAC optimizes

Jpπq “ Eπ

«

ÿ

t

Rpst, atq ` α ¨H pπpstqq

ff

, (6)

where H pπq is the entropy of the policy at state st, and α is
a temperature coefficient balancing exploration and exploita-
tion. SAC maintains a data buffer D with all the transition
samples and learns a soft Q-function Qψps, aq parameterized
by ψ. Assuming the policy is parameterized by θ, SAC opti-
mizes the policy by the following objective

Jpθq “ Est„D

“

Eat„πθpstq rα log πθpat|stq ´Qψpst, atqs
‰

.
(7)

The temperature α and the parameter ψ of the soft Q-network
are also learned similarly.

4 AutoTruss: A Two-Stage Method

Truss layout design has a huge search space, which makes it
extremely expensive for exhaustive search methods to achieve
high performance. It is not feasible to apply end-to-end rein-
forcement learning (RL) methods either, since there are many
restrictions on valid truss layouts, yielding highly sparse re-
ward signals. Therefore, we proposed AutoTruss, a two-stage
method consisting of a search stage and a refinement stage.
In the search stage, AutoTruss uses a UCT search for diverse
valid layouts. In the refinement stage, AutoTruss adopts deep
RL to further improve the valid solutions. The overview of
AutoTruss is shown in Fig. 1 with details described below.

4.1 Search Stage: UCT for Valid Designs

The purpose of the search stage is to find diverse valid truss
layouts as a foundation for the refinement stage. We remark
that diversity is important since similar topologies from the
search stage will yield similar results from the refinement
stage, while diverse inputs for the RL policy will improve
the overall performances and robustness of AutoTruss.

We use UCT search to find valid truss layouts. We di-
vide the generation process of a truss layout into three steps:
node-adding step, bar-adding step, and cross-sectional area-
changing step. The pipeline of UCT search is shown in Fig. 2.
To be specific, given the initial truss layout G0 “ pV0, E0q,
our UCT search takes these three steps sequentially to pro-
duce a complete layout Gm “ pVm, Emq from scratch. In
the node-adding step, it adds new nodes to the layout until it
reaches the maximum number of nodes, and then in the bar-
adding step, bars with a random cross-sectional area will be
added to the truss layout until it satisfies the structural con-
straints described in Sec. 3.1. Finally, we choose the appro-
priate cross-sectional area for each added bar in the cross-
sectional area changing step. Following [Luo et al., 2022b],
for each complete truss layout Gm “ pVm, Emq, the reward



Figure 1: Overview of the two-stage approach AutoTruss. In the search stage, UCT Search is applied for diverse valid truss layouts. In the
refinement stage, we adopt SAC algorithm to train a policy for truss layout refinement.

Figure 2: Pipeline of UCT search. UCT search sequentially adds
nodes, adds bars, and changes bar cross-sectional area.

is defined by

RUCT pGmq “

$

’

&

’

%

´1 , invalid (structural);
0 , invalid (other);
κ

Mass pGmq2
, valid layout,

.

(8)
κ is a scaling parameter, which is typically chosen to bound
the maximum reward below 10 for numerical stability.

UCT Search with Continuous Actions
A challenge when applying classical UCT to truss layout de-
sign is that the actions are all continuous. Therefore, for any
intermediate truss layout G, finding the optimal UCT action
πUCT pGq according to Equ. (4) becomes non-trivial. In Au-
toTruss, we approximate the best action by drawing random
samples and choosing the optimal action from the samples:

âpiq „UniformpAq @1 ď i ď N,

π̂UCT pGq “ arg max
a“âp1q,...,âpNq

QUCT pG, aq. (9)

In our implementation, we choose N “ 25.
Another issue for continuous actions is to compute the ac-

tion value QUCT pG, aq since there are infinitely many such
values to compute leading to an unbounded search tree size.
In our implementation, we constrained the expansion size for
each intermediate truss layout G such that we at most ex-
pand Op

a

npGqq children to compute the exact values [Yee
et al., 2016]. For other state-action pair pG, a1q without tree
expansion, we approximate itsQpG, a1q and npG, a1q via ker-
nel regression [Nadaraya, 1964] based on the precise values
of the expanded actions from G. Suppose there are M ex-
panded actions, i.e., āp1q, . . . , āpMq. The value QpG, a1q can

be approximated by

Q̂pG, a1q “

řM
i“1Kpa1, āpiqqnpG, āpiqqQpG, āpiqq

řM
i“1Kpa1, āpiqqnpG, āpiqq

. (10)

The counts npG, a1q can be similarly approximated. Here
Kp., .q denotes a kernel function. We simply adopt the Gaus-
sian kernel in our implementation.

Diverse Layouts
To get diverse valid truss layouts for the refinement stage, we
not only need to save the best truss layout, but also some other
suboptimal valid truss layouts. Note that two truss layouts
G1, G2 are topologically the same if and only if there exists a
permutation σ over node indices such that

@pu, vq P G1, pσpuq, σpvqq P G2. (11)

It is time-consuming to enumerate all the permutations, we
relax the criterion and only adopt the identity permutation in
practice for topology checking. Finally, we store the top 5
lightest valid layouts for each topology and use G to denote
this set of diverse truss layouts we obtained.

4.2 Refinement Stage: RL for Adjustment
In the refinement stage, we adopt the SAC algorithm to refine
those valid truss layouts G generated in the search stage.

Action Space
The RL policy needs to perform two types of actions, i.e.,
adjust a node position and the cross-sectional areas of a spe-
cific bar in a truss layout. For node position refinement,
when given a specific node to change, the policy outputs a
multi-dimensional vector denoting the change of node coor-
dinates. In the 2-dimensional case, the policy outputs pδx, δyq

indicating the change in the node’s position. Similarly, in
the 3-dimensional case, the policy outputs pδx, δy, δzq. Here
all δi ă 0.5 such that the adjustment will be confined to a
small zone with dimension no more than 0.5m. This is to
ensure that the majority of actions taken by RL will not vio-
late the constraints. For cross-sectional area changes, when
given a specific bar to adjust, the policy outputs a single real
value for area change in the 2-dimensional case. In the 3-
dimensional case, the policy outputs two continuous actions,



Figure 3: Network architecture of RL policy in the refinement stage.

namely changing the outer diameter and changing the thick-
ness of the bar. Note that not all cross-sectional areas are valid
in the 3-dimensional case, so the actual values are rounded up
to the minimum legal value during execution.

Reward Function
The design principle of the reward function is to (1) penalize
invalid layouts and (2) promote lighter layouts. Suppose an
action a is taken on an intermediate layout G leading to a
refined layout G1, the reward function is defined as

RpG, aq “

$

’

&

’

%

´50 , invalid (structural);
´10 , invalid (other);

κ

MasspG1q2
´

κ

MasspGq2
, valid.

.

(12)

Network Architecture
The network architecture of the RL policy is shown in Fig. 3.
Inspired by the transformer architecture [Vaswani et al.,
2017], we adopt (1) a self-attention encoder to extract the
spatial relationship between nodes and bars, and (2) an ac-
tion decoder to output high-precision refinement actions for
the node or bar to be operated on in the current iteration. The
nodes are represented using coordinates, loads, and whether
or not they are supported. The bars are represented as the co-
ordinates of the two end nodes, with (a) the cross-sectional
area of the bar in 2D, or with (b) the outer diameter and the
thickness of the bar in 3D. All the nodes and bars are passed
through an embedding layer and then sent to the self-attention
encoder for spatial relationship extraction. The node-bar ad-
jacency matrix is also fed into a self-attention encoder to re-
flect the topology of the truss layout. Then, the results of the
embedding layer for the node or bar being operated in the
current iteration will be sent to the action decoder together
with its embedding of the self-attention encoder. Finally, the
policy outputs both the Q values and the multi-dimensional
action. Full details can be found in Appendix A.4.

Rollout Generation for RL Training
In our approach, we employ a probabilistic initialization strat-
egy for the initial state of RL. In particular, we keep maintain-
ing the top-5 diverse layouts in G. When each episode starts,
we uniformly sample from G with 50% probability. Other-
wise, we alternatively start from the top-5 lightest truss lay-

Algorithm 1 AutoTruss

Inputs: Initial truss layout G0 “ pV0, E0q, where V0 means
fixed node set and E0 means the fixed bar set.

1: Diverse Truss Set G Ð H

2: while Tree Search Steps ă Limit do Ź search stage
3: Search from pV0, E0q w.r.t. Equ. (9)
4: Update counts and value for expanded nodes
5: Update G
6: end while
7: Initialize the policy π, data buffer D Ź refinement stage
8: while RL steps ă RL Limit do
9: Select initial state from G

10: Generate an episode τ w.r.t. the policy πθ
11: Update G
12: Add τ to D and update πθ via SAC
13: end while
14: return argminGPG MasspGq

outs found during training without considering topology di-
versity. The termination criterion of one episode is that the
maximum number of 20 actions are performed. We also early
terminate an episode if the policy generates 5 invalid layouts
within a single episode. In addition, in each RL step, we ran-
domly choose a node or a bar from the current layout for the
policy to adjust. More details can be found in Appendix A.5.

4.3 Overall Algorithm
We summarize the overall process of AutoTruss in Algo-
rithm 1. The input to the algorithm is the initial truss layout
G0 “ pV0, E0q as well as the constraints. V0 represents the
support nodes and E0 represents the fixed bars. After apply-
ing the two stages, the algorithm finally outputs the lightest
truss layout ever derived during the entire search process.

5 Experiments
We compare AutoTruss with 3 search-based baselines using
both 2D and 3D test cases, where AutoTruss consistently pro-
duces the best truss designs. We also evaluate the effective-
ness of each module in AutoTruss through ablation studies.
We introduce test cases in Sec. 5.1, baselines in Sec. 5.2, and
the experiment setup in Sec. 5.3. Main results and ablation
studies are in Sec. 5.4 and Sec. 5.5 respectively.

5.1 Testbeds
2D Testbed
We choose two common 2D test cases in truss layout de-
sign [Fenton et al., 2015]: the 10-Bar Cantilever Truss (10-
Bar) and the 17-Bar Cantilever Truss (17-Bar), as shown in
Fig.4. Both are common test cases in the field of structure
generation and optimization [Assimi et al., 2017; Deb and
Gulati, 2001; Tejani et al., 2018; Fenton et al., 2015] . There
are 2 load cases in the 10-Bar case. The buckle constraint
and the slenderness constraint are not applied to the 10-Bar
case. In the 17-Bar case, all the constraints except the slen-
derness constraint are taken into consideration. The detailed
settings are listed in Appendix A.1.



Figure 4: 10-Bar and 17-Bar truss layout design cases of the 2D
testbed. In the 10-Bar case, there are 2 kinds of load cases. Load
case I has four fixed nodes pa, b, c, dq, whereas load case II has six
fixed nodes pa, b, c, d, e, fq. In the 17-Bar case, there are 3 fixed
nodes pa, b, iq. In all 2D cases, pa, bq are support nodes.

Figure 5: Cantilever Sundial truss layout design case of the 3D
testbed. There are 4 fixed nodes pa, b, c, dq. pa, b, cq are support
nodes.

3D Testbed
We select the Cantilever Sundial Design (Sundial) as the 3D
testbed, which follows [Luo et al., 2022a]. The test case was
adapted from the sundial bracket truss located in Paternos-
ter Square, London, UK [Shea and Zhao, 2004]. As shown in
Fig. 5, the Sundial testbed is characterized by a higher dimen-
sion and a larger scale and complexity of the solution space
when compared to the 2D testbed.

5.2 Baselines
We consider 3 competitors: AlphaTruss [Luo et al., 2022b],
KR-UCT [Luo et al., 2022a], and SEOIGE [Fenton et al.,
2015]. All the baseline methods can be applied to the 2D
testbed, but only KR-UCT can be applied to the 3D testbed.
Therefore, we compare 2D results with all three baselines and
compare 3D results only with KR-UCT. We utilized the re-
sults of the baselines as reported in their original papers, as
the test cases and evaluation methods used in those studies
were consistent with those employed in our own research.
The details of baselines are listed in Appendix A.2.

5.3 Experiment Setup
KR-UCT and SEOIGE use single-stage search while we use
a two-stage search scheme. We balance the iterations in the
search stage, and the environment steps in the refinement
stage to keep a fair comparison. More specifically, we run
2e6 iterations in the search stage, which is half the number
of iterations in KR-UCT, and 1.5e5 environment steps for RL
training, so that the running time of the refinement stage is
similar to the search stage with an RTX 3070 GPU. We re-
mark that AutoTruss consumes substantially fewer trials (i.e.,
search iterations + RL steps) compared with baselines, and
The details can be found in Appendix A.8. We run 3 seeds
for each test case and report the best numbers with the mean
numbers and standard deviations.

Cases Settings AlphaTruss KR-UCT SEOIGE AutoTruss

10-Bar Load I, p=6 2150 2154 2218 2114(2128, 17.6)
Load II, p=7 1616 N/A 2098 1337(1410, 61.2)

17-Bar p=6 1408 1463 2582 1378(1398, 22.2)

Table 1: Results of 10-Bar and 17-Bar truss layout design in 2D
testbed. p is the number of nodes in the generated truss layouts.
N/A denotes that the original paper does not report the number. Au-
toTruss outperforms baselines in all cases, showing the capacity to
generate lighter truss layouts under various settings.

Figure 6: Visualization of truss layouts derived by AutoTruss and
AlphaTruss in 2D testbed. We demonstrate 10-Bar truss layouts un-
der 2 settings and the 17-Bar truss layout. The thicker lines represent
larger cross-sectional areas. AutoTruss derives the same truss layout
topology as AlphaTruss but with better refinement in 10-Bar load I
case, and derives better topologies in other cases. The pictures of
AlphaTruss are adopted from the original paper.

5.4 Main Results
2D Results
The mass of the solutions derived by AutoTruss and baselines
are presented in Tab. 1, where p denotes the number of nodes
in truss layouts. AutoTruss outperforms the baselines in all
the settings by an average of 6.8%, demonstrating its ability
to discover more lightweight truss layouts. Moreover, The
illustration of the truss layouts is shown in Fig. 6. AutoTruss
find the same truss layout topology with better refinement in
10-Bar load I case, and finds better topologies in other cases.

3D Results
Tab. 2 shows a comparison of AutoTruss and KR-UCT in the
Cantilever Sundial truss layout design of the 3D testbed. Our
method consistently outperforms KR-UCT by at least 25%
under all settings. This highlights the effectiveness of Au-
toTruss in designing lightweight truss layouts within a larger
search space. It is noteworthy that 3D truss design poses a
greater challenge than 2D truss design, as the search space is
substantially enlarged. Our approach exhibits a more signifi-
cant improvement in the 3D case than the 2D counterpart.

The visualization comparison is shown in Fig. 7. The truss
layouts derived by AutoTruss show a more elongated appear-
ance compared with those derived by KR-UCT.



Settings KR-UCT AutoTruss

p = 7 N/A 30.6(31.3, 0.63)
p = 8 38.7 29.0(30.4, 1.01)
p = 9 37.2 28.8(30.5, 1.32)

Table 2: Results of Cantilever Sundial truss layout design in 3D
testbed. p is the number of nodes in the generated truss layouts.
N/A denotes the original paper does not report the number. Au-
toTruss outperforms KR-UCT by 25.1%, showing the ability to gen-
erate complex 3D truss layouts.

Figure 7: Visualization of truss layouts derived by AutoTruss and
KR-UCT in 3D testbed. p is the number of nodes in the generated
truss layouts. The truss layouts derived by AutoTruss are more slen-
der and streamlined than those derived by KR-UCT.

.

Settings AutoTruss w.o. Diverse AutoTruss

Load I, p = 6 2149.60(1.90) 2128.73(17.83)
Load II, p = 7 1419.67(18.45) 1410.73(61.17)

Table 3: Ablation studies on the usage of diverse truss layouts. Au-
toTruss w.o. Diverse directly uses the lightest truss layouts derived
in the search stage without different topologies. AutoTruss achieves
better performance under all settings.

5.5 Ablation Study
In this section, we analyze the effectiveness of the two-stage
scheme, the usage of diverse truss layouts in the search stage,
as well as network architecture, all based on the 10-Bar truss
layout design cases of 2D testbed through ablation studies.
Results are reported as “mean (standard deviation)”.

Search-Stage-Only v.s. Two-Stage
We present truss layouts only derived from the search stage
and refined by the refinement stage separately in Fig. 8. In
all cases, the refinement stage substantially reduces the total
mass of the truss layout by 28% on average, demonstrating
the importance of the refinement stage in AutoTruss for fur-
ther performance improvement.

Usage of Diverse Truss Layouts
To investigate the advantages of the diverse truss layouts de-
rived in the search stage, we use the lightest truss layouts de-
rived in the search stage without different topologies, named
AutoTruss w.o. Diverse. The results are presented in Tab. 3.
AutoTruss outperforms AutoTruss w.o. Diverse by an aver-
age of 3% in all cases, which demonstrates the effectiveness
of introducing diverse truss layouts.

Network Architecture
Transformer and GNN architectures are commonly employed
to handle graphical inputs. The comparison between GNN-

Figure 8: Comparison of truss layouts only derived by the search
stage (Search-Stage-Only) and refined by the refinement stage(Two-
Stage). The refinement stage can effectively tune truss layouts in
both node positions and bar cross-sectional areas.

Settings GNN-based Policy AutoTruss

Load I, p = 6 2151.64(12.10) 2128.73(17.83)
Load II, p = 7 1412.93(99.87) 1410.73(61.17)

Table 4: Ablation studies on the network architecture. AutoTruss,
which adopts Transformer-based architecture, shows slightly better
performance than GNN-based Policy.

based Policy and AutoTruss is presented in Tab. 4. We uti-
lized CGConv [Fey and Lenssen, 2019] as GNN module,
which has been demonstrated to exhibit good performance in
material property prediction tasks [Xie and Grossman, 2018].
The node positions, loads, and support information are em-
bedded as nodes, and the cross-sectional area of each bar is
recorded as an edge property. After GNN, we extract the
embedding of the action node and then concatenate it with
the action embedding for the final action. Empirically, we
observe that a Transformer-based policy, as we used in Au-
toTruss, performs slightly better than a GNN-based Policy.

6 Conclusion
We propose a two-stage method AutoTruss that can automat-
ically design truss layouts under various constraints. We use
UCT search to find diverse valid truss layouts in the search
stage and then use deep RL policy to refine the truss lay-
outs derived in the search stage. AutoTruss outperforms the
baselines by 6.8% on 2D testbed and 25.1% on 3D testbed.
AutoTruss may perform poorly when generating large-scale
spatial structures, and combining basic structural elements in
the search stage could accelerate the search speed. We leave
this as our future work.
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A Appendix
A.1 Detailed Constraints
For any truss layout G “ pV,Eq, we have 8 constraints in
total to check whether the truss layout is valid.

We define some parameters first: Ω is the design domain,
zi is the cross-sectional area of i-th bar, li is the length of
i-th bar, σi is the stress of i-th bar (σi ą 0 means the
bar is in tension and ă 0 means in compression), δi is the
displacement of i-th nodes from its original position after
loaded, σci “ maxp0,´σiq is the compression part of stress,
bi “ π2EIi{zil

2
i refers to the buckling limit of i-th bar (E

is Young’s modulus, Ii is the moment of inertia of i-th bar),
λi “ li{

a

Ii{zi is the slenderness ratio of i-th bar.
The 8 constraints g0, ..., g8 are listed as following:

• Geometry stabilitypg0q: the truss layout must pass three
basic checks: (a) no extra degree of freedom, (b) stiff-
ness matrix ą 0, (c) no intersection between bars;

• Design domainpg1q: each node and bar should be in the
design domain Ω;

• Cross-sectional areapg2q: each bar’s cross-sectional area
zi should be within rzmin, zmaxs;

• Stress constraintpg3q: each bar’s strength σi should be
within rσmin, σmaxs;

• Displacementpg4q: each node’s displacement δi should
be within a small range in each direction. i.e, }δi}8 ď

δmax;

• Stabilitypg5q: each bar’s compression part of stress σci
should be less than its buckle limit bi.

• Stiffnesspg6q: each bar’s slenderness ratio λi should be
less than λmax;

• Bar lengthpg7q: each bar’s length li should be within
rlmin, lmaxs.

Notice that not all the constraints need to be satisfied in
the test cases, and some test cases take the self-weight into
consideration. We specify the constraint set in each test case
in A.2.

A.2 Detailed Settings of Testbeds
10-Bar Cantilever Truss
The design domain of the 10-Bar Cantilever Truss is shown
in Fig. 4 left. The 10-Bar Truss test case has 6 fixed nodes.
The left two nodes pa, bq are support nodes, and the right
four nodes pc, d, e, fq may take some loads. The test case
has two load cases. Load case I only has loads on nodes
pc, dq, while Load case II has loads on all the four nodes
pc, d, e, fq. If a fixed node has no load and is not a support
node, it will be removed from the initial truss layout. Con-
straints tg0, g1, g2, g3, g4u need to be satisfied in the 10-Bar

Node Location(mm) Load Case 1 Load Case 2

a (0, 0) Support Support
b (0, 9144) Support Support
c (9144, 0) Loaded (0, -444,800 N) Loaded (0, -667,200 N)
d (18288, 0) Loaded (0, -444,800 N) Loaded (0, -667,200 N)
e (9144, 9144) N/A Loaded (0, 444,800 N)
f (18288, 9144) N/A Loaded (0, 444,800 N)

Table 5: Each fixed node information of the 10-Bar test case.

Parameters Values

Design DomainpΩq r0, 18, 288s ˆ r0, 9, 144s mm
Young’s moduluspEq 68, 950 MPap10, 000 ksiq

Densitypρq 2767.99 kg/m3
p0.1 lb/in3q

Stress rangepσmin, σmaxq r´172.369, 172.369s MPapr´25, 25sksiq
Max node displacementpδmaxq 50.8 mmp2 inq

Bar area rangepzmin, zmaxq r0.6452, 225.806s cm2

Consider self-weightpfself q No

Table 6: Detailed constant information of the 10-Bar test case.

Node Location(mm) Load

a (0.0, 0.0) Support
b (0.0, 2540.0) Support
i (10160.0, 0.0) Loaded (0, -444,800 N)

Table 7: Each fixed node information of the 17-Bar test case.

Parameters Values

Design DomainpΩq r0, 10, 160s ˆ r0, 2, 540s mm
Young’s moduluspEq 206, 850 MPap30, 000 ksiq

Densitypρq 7418.21 kg/m3
p0.268 lb/in3q

Stress rangepσmin, σmaxq r´334.6, 334.6s MPapr´50, 50sksiq
Max node displacementpδmaxq 50.8 mmp2 in.q
Bar area rangepzmin, zmaxq r0.6452, 225.806s cm2

Consider self-weightpfself q No

Table 8: Detailed constant information of the 17-Bar test case.

test case. The node numbers p of load case I and II are 6 and
7, respectively. This test case does not take the self-weight of
bars into consideration.

Detailed information on fixed nodes is listed in Tab. 5. Ma-
terial properties and constraint parameter settings are listed in
Tab. 6.

17-Bar Cantilever Truss
The design domain of the 17-Bar Cantilever Truss is shown
in Fig. 4 right. The 17-Bar Truss test case has 3 fixed nodes.
The left two nodes pa, bq are support nodes, and node piq takes
some loads. Constraints tg0, g1, g2, g3, g4, g5u need to be sat-
isfied in the 17-Bar test case. The node number p is 6. This
test case does not take the self-weight of bars into considera-
tion.

Detailed information on fixed nodes is listed in Tab. 7. Ma-
terial properties and constraint parameter settings are listed in
Tab. 8.

3D Cantilever Sundial
The design domain of the 3D Cantilever Sundial test case is
shown in Fig. 5. The design domain only represents node
locations and there is no mandatory geometric boundary for
newly added nodes and bars. There are four fixed nodes in



Node Location(mm) Load

a (0.0, 0.0, 0.0) Support
b (0.0, -483, 595) Support
c (0.0, 483, 595) Support
d (4634, 772, -78) Loaded (0, 0, -50 N)

Table 9: Each fixed node information of the 3D Sundial test case.

Parameters Values

Design DomainpΩq No mandatory geometric boundary
Young’s moduluspEq 193 GPa

Densitypρq 8000 kg/m3
p0.268 lb/in3q

Strength range r´123, 123s MPa
Max node displacementpδmaxq 2 mm

Slenderness ratiopλmaxq 220(tension bar) and 180(compression bar)
Bar length rangeplmin, lmaxq r0.03, 5s m

Bar area range pzq Cross-sections in GB50018-2002
Consider self-weightpfself q Yes

Table 10: Detailed constant information of the 3D Sundial test case.

the design domain, among which nodes p1, 2, 3q are support
nodes, and node p4q is the sundial tip with load 50 N. Con-
straints tg0, g1, g2, g3, g4, g6, g7u need to be satisfied in the
Sundial test case. The node number p is 7 or 8 or 9. This test
case takes the self-weight of bars into consideration.

Detailed information on fixed nodes is listed in Tab. 9. Ma-
terial properties and constraint parameter settings are listed in
Tab. 10. Note that the slenderness ratio limit is different for
tension bars and compression bars (220 for tension bars and
180 for compression bars).

The cross-section of the bars used in this section is the
section of cold-formed thin-wall welded round steel tube
(GB50018-2002)[GB50018, 2002]. There are 61 kinds of
cross-sections in total and each area z of the cross-sections
is defined by diameter d and thickness t: z “ πpd2{4 `

pd ´ 2tq2{4q, with parameters ranging from d 25 t 1.5 to
d 245 t 4.0.

A.3 Detailed Baseline Description
AlphaTruss
AlphaTruss[Luo et al., 2022b] is a two-stage search method.
The first stage is searching in discrete space by UCT search.
Similar to AutoTruss, it searches for node position, node con-
nection, and cross-sectional area of bars sequentially. The
second stage is used to refine the best truss layouts generated
in the first stage by discretized UCT search, too. In detail,
suppose w is the step size of the discretization in the first
stage and p is the search result of a node’s position or a bar’s
cross-sectional area. The search domain will be restricted to
rp´ w{2, p` w{2s.

KR-UCT
KR-UCT[Luo et al., 2022a] is a one-stage search method,
which uses UCT search directly. To handle the continuous
search space, it applies the kernel method. Similarly to Al-
phaTruss, it searches node position, node connection, and
cross-sectional area of bars sequentially. To the best of our
knowledge, it is the first search method that can apply to 3D
settings without any predefined structure.

SEOIGE
SEOIGE[Fenton et al., 2015] uses grammatical evolution to
represent a variable number of nodes and positions on a con-
tinuum, and then uses the Delaunay triangulation algorithm to
build bars between nodes. SEOIGE works well in test cases
where the structure of the solution is not known a priori.

A.4 Network Architecture
All in all, the network architecture of the RL policy for Au-
toTruss has four parts: node/bar/action id/action embedding,
self-attention encoder, action decoder, and action/value head.

Node/Bar/Action id/Action Embedding
For a truss layout G “ pV,Eq, AutoTruss first embeds each
node vi and bar ei by MLPs. In detail, a node vi is repre-
sented by [position, support condition, load condition] and
put into a two-layer MLP with hidden dim 128 and output
dim 256. Similarly, a bar ei is represented by [node position
1, node position 2, cross-sectional area] and put into a two-
layer MLP with the same hidden dim and output dim as node
embedding. For the action id and action, we also use two two-
layer MLPs with the same hidden dim and output dim. Let the
embedded nodes, bars, action id, and action be v̂1, ..., ˆv|V |,
ê1, ..., ˆe|E|, îd, and â, respectively.

Self-Attention Encoder
To get the connection between nodes, bars, and action id of
a truss layout. We use a self-attention encoder to extract in-
formation. First, we concatenate the embedding of nodes and
bars as a sequence rv̂1, ..., ˆv|V |, ê1, ..., ˆe|E|s, and then put the
sequence into the self-attention encoder. The self-attention
encoder has hidden dim 256 and 6 layers.

Action Decoder
To get the predicted action a and the Q value Qps, aq. Action
id îd and action â are put into the action decoder, which is a
6 layer decoder with hidden dim 256. Let the hidden state of
action id and action generated by action decoder be hid and
ha, respectively.

Action/Value Head
We use the hidden state of action id hid and action ha to gen-
erate action a and predict Q-value Qps, aq, respectively. To
generate action a, we put hid into a three-layer MLP with
hidden dims 256, 512. Similarly, to predict Q-value Qps, aq,
we put ha into another MLP with the same hidden dims.

A.5 Hyperparameters
There are 6 hyperparameters in our algorithm, namely the
first exploration parameter β in Equ. (2), the second explo-
ration parameter c in Equ. (3), discount factor γ in Equ. (5),
temperature parameter α in Equ. (6), and the learning rate of
policy and Q-value function lrpolicy and lrQf . . The values of
the hyperparameters are chosen through trial and error, with
their values listed in Tab. 11.

A.6 Data of Generated Truss Layouts
Detailed data of the generated truss layouts, including node
coordinates and cross-sectional areas of the bars are provided
in tables. Tab. 12 shows the details for both load case I and



Hyperparameters Values

Exploration parameter Ipβq 0.3
Exploration parameter IIpcq 30

Discount factorpγq 0.99
Initial temperaturepαq 1.0

Policy learning rateplrpolicyq 0.0003
Q-value learning rateplrQf q 0.0003

Table 11: Hyperparameters used in UCT, RL, and SAC.

Figure 9: Illustration for the generated truss in 2D 10-bar.
.

Node Label A B C

Coord. (mm) (6115,3851) (11508,6647) (17380,5062)

1 2 3 4 5 6
125 31.8 126 189 33.2 117

Bar Label 7 8 9 10 11 12
Area (cm2) 97.9 140 165 88.7 53.6 1.06

13 14 15 16 17 18
58.4 57.0 14.0 0.65 63.1 12.9

Table 12: Detailed data of the generated truss in 2D 10-bar.

Figure 10: Illustration for the generated truss in 2D 17-bar.
.

Node Label D E F

Coord. (mm) (3963,0) (6395,0) (6462,2528)

Bar Label 1 2 3 4 5 6 7 8
Area (cm2) 132 38.6 47.6 48.7 71.4 0.65 76.1 41.4

Table 13: Detailed data of the generated truss in 2D 17 bar.

II for the 10-bar test case with illustration in Fig. 9. Tab. 13
shows the details for the 17-bar test case with illustration in
Fig. 10. Tab. 14 and Tab. 15 show the details for the 3D test
case.

A.7 Ablation Study on Environment
To check the design of the RL environment, we conduct an
ablation study on whether the environment allows invalid
truss layouts during rollout. Under our current design, the
environment allows the policy generates invalid truss layouts

3D Case Node Coordinates (m)
# 7-Point 8-Point 9-Point

1 (0, 0, 0) (0, 0, 0) (0, 0, 0)
2 (0, -0.48, 0.6) (0, -0.48, 0.6) (0, -0.48, 0.6)
3 (0, 0.48, 0.6) (0, 0.48, 0.6) (0, 0.48, 0.6)
4 (1.66, 0.24, -0.11) (4.63, 0.77, -0.08) (4.63, 0.77, -0.08)
5 (1.69, 0.3, 0.18) (1.67, 0.31, -0.03) (2.29, 0.38, -0.12)
6 (1.64, 0.22, 0.27) (1.77, 0.37, 0.34) (1.57, 0.27, 0.22)
7 (4.63, 0.77, -0.08) (0.43, -0.08, 0.43) (0.6, 0.14, 0.57)
8 (1.72, 0.29, 0.38) (1.74, 0.36, 0.24)
9 (1.71, 0.23, 0.22)

Table 14: Node coordinates detail of the generated truss in 3D.

Bar Connection, Outer Diameter(mm)
(Thickness=1.5 mm, if not stated otherwise)

7-Point 8-Point 9-Point

1-5: 30.0 3-5: 25.0 1-5: 30.0 3-5: 25.0 4-9: 40.0 1-4: 40.0
1-6: 30.0 3-6: 25.0 3-6: 25.0 4-6: 40.0 3-5: 25.0 4-5: 25.0
4-6: 40.0 5-6: 25.0 5-6: 25.0 1-7: 25.0 1-6: 25.0 2-6: 25.0
1-7: 30.0 2-7: 25.0 2-7: 25.0 3-7: 25.0 3-6: 25.0 7-9: 40.0
3-7: 25.0 5-7: 25.0 5-7: 25.0 1-8: 30.0 1-7: 25.0 4-7: 25.0
6-7: 25.0 3-8: 25.0 4-8: 40.0 5-7: 25.0 6-7: 25.0
4-5: 51.0 Ð 2mm thick 6-8: 25.0 7-8: 25.0 8-9: 40.0 1-8: 25.0
4-7: 51.0 Ð 2mm thick 4-7: 51.0 Ð 2mm thick 3-8: 30.0 4-8: 25.0

5-8: 25.0 6-8: 25.0
7-8: 25.0

Table 15: Bar connections, outer diameter and thickness of the gen-
erated truss in 3D.

Settings AutoTruss w.o. Invalid AutoTruss

Load I, p = 6 2136.01(14.91) 2128.73(17.83)
Load II, p = 7 1631.41(128.69) 1410.73(61.17)

Table 16: Ablation studies on whether the environment allows in-
valid truss layouts. AutoTruss w.o. Invalid does not allow any in-
valid truss layouts to occur in the rollout. AutoTruss achieves better
performance under all settings.

in less than 5 steps within a single episode. Another environ-
ment design does not allow the policy generates any invalid
layouts, and it will stop the episode immediately if any invalid
layout occurs, named AutoTruss w.o Invalid. We run the abla-
tion study on the 10-Bar test case for 3 seeds, and the compar-
ison is shown in Tab. 16. Data is reported as "mean(standard
deviation)". Allowing the occurrence of invalid truss layouts
achieves better results since it encourages the RL policy to
explore more.

A.8 Comparison of Running Time
The parameters for the number of episodes used in the UCT
search and the number of environment steps used in the rein-
forcement learning were chosen to ensure a fair comparison
to other baselines, by keeping a similar time cost.

Our first baseline, KR-UCT, uses a single stage of search-
ing with an upper limit of 4 million iterations when running
the 3d kr-sundial test case. In contrast, since our algorithm
has two stages, we set the upper limit of the search stage to
2 million iterations to keep the search time half that of KR-
UCT. 150, 000 environment steps ensure that the refinement
stage takes the same time as the search stage.

The second baseline, AlphaTruss, also has two stages, and
its search stage takes approximately half the number of itera-



tions as KR-UCT. Therefore, the computation for our search
stage is consistent with AlphaTruss.

We report the number from their paper for the third base-
line SEOIGE since its codebase is not public.
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